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Part I

Introduction to parallel programming
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Parallel computers

A parallel computer is a set of processors that are able to work cooperatively to solve a
computational problem.

Parallel computers provide expandable processing power, memory capacity and I/O
bandwidth.
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Shared vs distributed

Parallel computers can be roughly divided into two classes, based on their memory
architecture:

• shared-memory computers;

• distributed-memory computers.
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Shared-memory computers

Processors share the same memory.

Each processor can access all memory addresses.

Inter-process communication via memory.

Memory access time increases with number of processors.

Bus-based design limits the maximum number of processors.
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Shared-memory computers
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Distributed-memory computers

Each processor has its own local memory.

A processor cannot access the memory of another processor.

Inter-process communication by sending packets over the network.

Communication performance measured in terms of latency and bandwidth (more about this
later).

Number of processors can be very large.
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Distributed-memory computers
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Virtually shared

Each processor has its own local memory.

A processor can directly access the memory of another processor through a routing network.

Identical to a shared-memory computer from a logical point of view.

Memory access time depends on the distance between the processor and the memory
module: Non-Uniform Memory Access (NUMA).

Number of processors can be large.
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Virtually shared
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Hybrid: shared & distributed

Most current parallel computers have a hybrid memory architecture, combining shared and
distributed memory.

The hybrid memory architecture is a logical consequence of combining multiple processor
cores in a single CPU.

A parallel computer with a hybrid architecture is composed of a collection of nodes, each
containing a few CPUs that share memory.

The nodes are connected to each other by a network.
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Hybrid: shared & distributed

Hybrid parallel computers enable the use of hybrid programming models to achieve optimal
performance.

Hybrid computers typically result in a non-regular performance profile. That is, the runtime
of a parallel program tends to be an irregular function of the number of processor cores that
are used.

The runtime will change differently when an additional core within a node is used than
when another core in another node is used.
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Accelerators

Some types of computations can be performed (very) much faster on special hardware.
Many large parallel computers therefore include so-called accelerators that can be viewed as
co-processors.

A common accelerator is a graphics processor or GPU. Modern GPUs are very efficient
when processing large sequences of similar operations on different data.

More flexible accelerators are field-programmable gate arrays or FPGAs. These can be
viewed as processors with a programmable instruction set.
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Accelerators

It is possible, and sometimes useful, to run only part of a program on an accelerator.

However, the interaction between the CPU and the accelerator can become a bottleneck.
There is therefore a trend to run complete programs on the accelerator only.

A drawback of using accelerators is that it requires a program to be written specifically for
an accelerator.

Several attempts to create uniform programming models for accelerators are being worked
on.
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Terminology

Modern parallel computers are composed of different units on different levels.

For instance, a parallel computer may be composed of multiple cabinets, containing
multiple nodes, containig multiple CPUs, containing multiple processor cores.

A processor core itself may even be composed of multiple compute units named hyper
threads or something similar.

In the remainder of this presentation we will use the term processor to indicate the basic
parallel compute unit.

Depending on the hardware being used, a processor could be a processor core, a hyper
thread or maybe a compute core in a GPU.
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Examples of parallel computers

Parallel computers used to be exotic and quite rare.

One of the first well-known parallel computers is the
Cray X-MP from 1983. It contained up to four CPUs
with vector processors in a shared memory configuration.

It has the same processing power as a modern phone.
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Examples of parallel computers

Nowadays, parallel computers can be found
anywhere; your mobile phone most probably
has more than four cores and a powerful GPU.

High-end phones even have special accelerators
for executing AI algorithms.
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Typical notebook or desktop

A typical notebook or desktop computer has from four
to 32 processing cores connected to shared memory.

On a macro level it is a shared-memory machine, but
on a micro level it is a virtually shared-memory machine
because of the hierarchical cache memory structure.

It often contains one or more accelerators in the form of
GPUs.
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Supercomputers

The top-end supercomputers are all
distributed-memory machines with several
million computing cores.

Many supercomputers combine general-
purpose processors with some kind of ac-
celerator often in the form of GPUs.

Example: the Summit contains about 2.4 million processing cores and 28 thousand
accelerators. It can perform about 144 Peta flops.
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The INGInious HPC server

https://inginious-hpc.ewi.tudelft.nl

The INGInious high-performance computing server runs on a shared-memory machine with
one AMD EPYC 7662 64-core processor and 128GB total memory.

The current configuration allows to run up to 4 student submissions in parallel with up to
64 processes and 32GB memory consumption per job. We advise you to test your parallel
programs with 1-16 processes/threads and request more processes/threads only for
well-tested programs to test the scalability of your implementation.

Submissions that take longer than 90 seconds to execute are stopped by the system.
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Performance characteristics

The overall performance of a parallel computer depends on:

• the speed of the processors/accelerators;

• the speed of the memory system;

• the speed of the network.

The network is only relevant for distributed-memory machines.
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Speed of the processors

Obviously, faster and/or more processors increase the performance of a parallel computer.

Heat dissipation and power consumption pose practical limits on the number of processors
and their speed.

The speed and number of the processors should match the speed of the memory system and
the network.

For instance, if the processors are too fast, they will spend a lot of time waiting. This is one
of the biggest problems in practice.
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Speed of the memory system

The memory system must be fast enough to supply the processors with the required data at
a rate that those data can be processed.

The more processors, the faster the memory system must be; the total memory bandwidth
must scale with the number of processors.

In a distributed-memory machine this scaling is more or less automatic as each node comes
with its own memory modules.

More cores on a node require a larger memory bandwidth per node.
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Speed of the network

Except for the most trivial parallel programs, data need to be exchanged between processors.

In a distributed-memory machine this means that data must be exchanged over the network
connecting the nodes.

The slower the network, the longer a processor must wait for the data it needs.

As the number of processors increases, more data typically needs to be exchanged over the
network; the network bandwidth must scale with the number of processors.
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Shared vs distributed machines

In shared-memory machines all data exchanges implicitly go through the shared memory.
The speed of the memory system is therefore a crucial factor in the overall performance.

In distributed-memory machines the performance of the network is the most important
factor affecting the overall performance.

In the ideal case every processor can send data directly to every other processor. However,
this requires p2 network connections which is not scalable.

Most distributed memory machines therefore involve a network with a grid or tree topology.
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Parallel speedup

The parallel speedup is an important measure of the performance of a parallel program.

The speedup S is defined as:

S(p) =
T (1)

T (p)

with T (p) the execution time of the program on p processors and T (1) the execution time
on one processor.
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Parallel speedup

The speedup tells how well the program can take advantage of an increasing number of
processors.

In the ideal case the speedup is equal to p.
That is, doubling the number of processors will
halve the execution time of the program.

For most parallel programs the speedup will be less than ideal because of the finite speed of
the memory system and the network.
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Parallel speedup

Note that it is more fair to take T (1) as the execution time of the most efficient serial
implementation of the program.

This is not necessarily equal to the execution time of the parallel implementation of the
program on one processor because an efficient parallel algorithm is not always an efficient
serial algorithm.

As it might not be trivial to implement the most efficient serial algorithm, one often takes
T (1) as the execution time of the parallel implementation on one processor.
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Parallel speedup

In practice, the parallel speedup tends to increase less
than p because an increasing amount of time is required
to coordinate the execution of multiple processors.

Typical causes of a lower-than-ideal speedup are: load imbalance, communication overhead
and serial sections.
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Load imbalance

Load imbalance arises when the total amount of work is not divided evenly over the
processors.

That means that some processors have more work to do than others; the ones with less
work have to wait for the ones with more work.

Avoiding load imbalance is not too difficult if the workload per processor is known in
advance.

It becomes more difficult when the workload varies dynamically in an unpredictable way. In
this case it might be necessary to periodically re-distribute the work over the processors.

This is called dynamic load balancing .
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Load balancing
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Communication overhead

In any non-trivial parallel program, processors need to exchange data.

Typically, sections of independent computations are interleaved by sections of
inter-processor data exchanges in which processors send and receive packets of data.

Sending/receiving a data packet involves time during which no useful work can be done.
This so-called communication overhead is not present in a serial program.
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Communication overhead

The time Tx that is required to transmit a package of size n is approximately given by:

Tx(n) = T0 +
n

B

where T0 is the latency and B the bandwidth of the network or memory system.

The latency is the time required to start a data exchange while the bandwidth is equal to
the number of data units (bytes/bits) that can be transmitted in each time unit (second).
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Latency

The latency is determined by signal propagation speeds and overhead in one or more
software layers (OS, libraries, applications).

The latency often depends on the load of the system. The more processors are using the
network or memory system, the higher the latency due to collisions.

If a physical wire or data lane is in use by one processor, another processor must wait.

If the latency is high, then good parallel speedup can only be obtained by keeping the
number of data exchanges low.

If possible, one should aggregate multiple smaller data exchanges into one larger exchange.
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Bandwidth

The bandwidth depends on the number of data lanes, their physical nature (light-based or
electron-based), and the clock frequency of the network or memory system.

Ideally, the total bandwidth of the system scales linearly with the number of processors. If
that is not the case, then it will be more difficult to achieve a good parallel speedup.

If the bandwidth is low, one should try to reduce the total data exchange volume.
Sometimes this is possible by repeating the same computations on multiple processors.
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Serial sections and Amdahl’s law

It might not be feasible to distribute an entire computation over multiple processors; some
parts of the computation are performed on a single processor only.

These parts are called serial sections, and their combined, relative size impose an upper
limit on the speedup that can be obtained.

Suppose that the serial runtime T (1) of a parallel program is given by:

T (1) = Ts + Tp

where Ts is the time spent in the serial sections, and Tp is the time spent in the parallel
sections.
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Amdahl’s law

In the ideal case, the parallel execution time is then given by:

T (p) = Ts +
Tp

p

Thus, the best possible speedup is given by:

S(p) =
1 + f

1 + f
p

f =
Tp

Ts

This is called Amdahl’s law .
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Amdahl’s law

Amdahl’s law imposes an upper limit on the speedup:

Smax = 1 + f = 1 +
Tp

Ts

For instance, if 10% of the execution time is spent in serial sections, then the program will
be at most 11 times faster on a parallel computer.

To make a program truly scalable it may not have any serial sections.
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Exercise: parallel speedup

Analyze the theoretical parallel performance of Conway’s game of life.

Conway’s game of life describes the evolution of a m × n grid in which each cell has an
associated value that is either zero or one.

The value of a cell in the next time step depends on the values of the neighboring cells in
the current time step.

The neighbors of a cell (i , j) are the cells (i ± 1, j ± 1).

The initial state of the grid completely determines how the grid evolves in time.
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Transition rules

The value of a cell transitions according to the following rules:

1 a non-zero cell becomes zero if it has less than two non-zero neighbors;

2 a non-zero cell remains non zero if it has two or three non-zero neighbors;

3 a non-zero cell becomes zero if it has more than three non-zero neighbors;

4 a zero cell becomes non zero if it has exactly three non-zero neighbors.
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Pseudo implementation

int a[M][N], b[M][N];

int i, j, k;

/* Initialize the matrix a ... */

while ( true )

{

for ( i = 0; i < M; i++ )

{

for ( j = 0; j < N; j++ )

{

k = sum ( a[i±1][j±] );

if ( a[i][j] )

if ( k < 2 || k > 3 )

b[i][j] = 0;

else

b[i][j] = 1;

else if ( k == 3 )

b[i][j] = 1;

else

b[i][j] = a[i][j];

}

}

a = b;

}
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Parallel implementation

To execute game of life in parallel, one processor initializes the grid and partitions it into p
rectangular sub-grids.

It then sends those sub-grids to all processors, including itself. After that, each processor
handles the evolution of its own sub-grid.

In each time step the processors exchange the values at the edges of their sub-grids with
their neighboring processors.
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Initialization phase
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Computation phase
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Performance analysis

Derive an expression for the parallel speed up of the program.

Assumptions:

• the network has latency T0 and bandwidth B;

• one cell requires time Ti to initialize;

• one cell requires time Te to process;

• the total number of time steps equals k .
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Parallel programming models

A programming model provides an abstract view of a computer, typically involving a central
processing unit, memory, a program counter and storage.

Using a programming model avoids becoming entangled in nitty gritty details like the exact
layout of the CPU and its connections.

It also makes a program portable across different hardware platforms.

The programming model is often implicitly part of the programming language being used.
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Parallel programming models

A parallel programming model essentially describes how multiple processors can be
coordinated.

Such a model enables one to describe a parallel program on a high level without having to
explicitly manage the execution of multiple processors and their interactions.

The three most commonly used programming models are the:

• message-passing programming model ;

• shared-memory programming model ;

• data-parallel programming model .
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Message-passing model

In the message-passing programming model, a program consists of concurrent tasks, each
one encapsulating its own sequential code and data.

Tasks are identified by a unique number or rank.

Tasks interact by sending and receiving data packets or messages.

Programmers must explicitly describe which tasks communicate with each other and when
they communicate with each other.

The message-passing programming model is supported by all types of parallel computers,
including shared-memory computers.
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Message-passing model
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Shared-memory model

In the shared-memory programming model, a program also consists of concurrent tasks that
execute their own sequential code.

In contrast to the message passing model, tasks share a common memory address space.

Tasks can read/write data from/to memory asynchronously. Access to shared data is
controlled by mutual exclusion primitives.

The programmer does not need to explicitly specify task interactions.

The shared-memory programming model is supported by shared-memory computers, but
only by a few distributed-memory computers.
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Shared-memory model
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Data-parallel model

In the data-parallel programming model, a program consists of a single task that executes
the same instructions on different data in parallel.

That is, the program consists of one stream of instructions that are applied to different
parts of the data set.

In general, it is not possible to apply different instructions to different parts of the data set
concurrently.

The processor and the runtime environment control how the operations are scheduled and
how the data are divided between different processing units.

The data-parallel model is often used when programming for accelerators or GPUs.
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SIMD/SPMD/MPMD

A parallel programming model is loosely coupled with a parallel execution model that
describes how a parallel program is actually executed.

Common execution models are:

SIMD Single Instruction, Multiple Data;

SPMD Single Program, Multiple Data;

MPMD Multiple Programs, Multiple Data;
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SIMD

The SIMD execution model is typically associated with data-parallel programs.

That is, all processors execute the same instructions that are applied to different data. The
processors operate synchronously; at any given time, all processors execute the same
instruction.

Modern processor cores support SIMD operations at the machine code level. These
operations, sometimes called vector operations, can be used to process multiple words at
the same time.

For instance, a vector addition can be used to sum multiple (floating point) numbers at the
same time.
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SPMD

The SPMD execution model involves a single program that is executed by multiple
processors concurrently. Each processor processes a different data set.

The processors operate asynchronously in that they can execute different instructions at any
given time. This means that one processor can be executing a different part of the program
than another processor.

An SPMD program typically contains points at which the execution of the processors is
synchronized.
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MPMD

The MPMD execution model involves multiple programs that are executed by multiple
processors concurrently.

A classic example is the manager-worker pattern in which one processor assumes a manager
role and the other processors assume a worker role. The manager processor typically farms
out work to the other processors and collects the results afterwards.

The manager processor executes a different program than the worker processors. The
worker processors execute the same program for different data sets.

The MPMD execution model is less common than the SPMD model as the former is less
scalable.
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Exercise: performance analysis

Analyze the real-world performance of the parallel implementation of the game of life
(based on MPI).

Create a new account at

https://inginious-hpc.ewi.tudelft.nl

and activate it by clicking on the link that you will receive via the activation email.

Sign in and register for the course

‘Practical Introduction to Parallel Programming’

The password is ‘PIPP2023’.

Go to course overview and click on [Introduction] Demo 1 : Game of Life.
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Command-line arguments

The example program can be configured through the following command-line arguments:

--dims mxn the dimensions of the grid;

--steps k the number of time steps;

--debug l the debug level (0 : none, 1 : info, 2 : all).

First run a small problem instance on a single processor with debug output, e.g.,
"--dims","15x15","--steps","3","--debug","2".

Next, disable debug output and select a larger problem size that you run on 1, 2, 4, 8, 16,
32, and 64 cores, e.g., "--dims","1000x1000","--steps","200","--debug","0".
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Parallel program design

The design of a parallel program can be divided into three stages:

1 partitioning : the computation and the data are decomposed into concurrent tasks.

2 communication analysis: the interactions between the tasks are identified.

3 mapping : the tasks are assigned to the available processors.
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Parallel program design
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Partitioning

During the partitioning stage the computations and the associated data are decomposed
into concurrent tasks.

The goal is to maximize the number of tasks in order to increase the parallel scalability of
the program.

Two common partitioning techniques:

• functional decomposition: the computation is partitioned into groups of logically
related operations; each group is assigned to a task.

• domain decomposition: the data are partitioned into multiple units. Each unit is
assigned to a task.
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Partitioning example

Example: transformation of a series of images.

smoothing segmentation feature extraction object recognition

DATA OPERATIONS

images
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Functional decomposition

smoothing segmentation feature extraction object recognition

task 3task 1 task 2 task 4

DATA OPERATIONS

images
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Domain decomposition
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Partitioning checklist

• Does your partition define more tasks than processors? If not, you have little flexibility
in subsequent design stages.

• Does your partition avoid redundant computation and storage requirements? If not,
the resulting algorithm may not be scalable to deal with large problems.

• Are tasks of comparable size? If not, it will be harder to allocate each processor equal
amounts of work.

• Does the number of tasks scale with problem size? If not, your parallel program may
not be able to solve larger problems when more processors are available.
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Communication analysis

Tasks are intended to execute concurrently but cannot, in general, execute independently;
the computation to be performed in one task will typically require data associated with
another task.

The goal of the communication analysis stage is to identify the communication patterns
between the tasks and define the communication procedures and data structures.
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Communication patterns

Common communication patterns:

Structured Communication patterns form a tree or grid.

Unstructured Communication patterns form an arbitrary graph.

Static Tasks always communicate with the same neighbor tasks.

Dynamic Neighbor tasks may vary during the computation.

Unstructured communication patterns complicate the mapping stage as sophisticated
algorithms may be required to determine a mapping strategy that balances the workload
between processors and minimizes communication requirements
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Communication checklist

• Do all tasks perform about the same number of communication operations?
Unbalanced communication requirements suggest a non-scalable design.

• Does each task communicate only with a small number of neighbors? If not,
communication overhead may limit the scalability of the program.

• Are communication operations able to proceed concurrently? If not, your algorithm is
likely to be inefficient and non-scalable.

• Do the communication patterns contain circular dependencies? If so, the program may
get stuck in a deadlock situation.
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Mapping

The goal of the mapping stage is to map tasks to the available processors in such a way
that each processor requires approximately the same time to complete its tasks, and that
the communication overhead is as small as possible

Three mapping strategies:

• place tasks that are able to execute concurrently on different processors to increase
parallelism;

• place tasks that are able to execute concurrently on the same processor to hide
latencies;

• place tasks that communicate frequently with each other on the same processor or near
to each other.
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Mapping considerations

Clearly, the three strategies will sometimes conflict, in which case our design will involve
trade-offs.

In addition, resource limitations may restrict the number of tasks that can be placed on a
single processor.

Increasing the task granularity decreases communication costs because of a decreasing
communication size and a decreasing number of messages.

This can be done by reducing the number of tasks and by replicating computation.

71 / 505



Mapping problem classification

easy

difficult

Structured data with structured communication
An efficient mapping is usually straightforward.

Unstructured data with unstructured communication
An efficient mapping strategy may not be obvious. Use static load
balancing algorithms.

Dynamic computation and communication
The number of tasks or the amount of computation or communication per
task changes dynamically. Static mapping does not suffice; use dynamic
load balancing algorithms.
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Mapping example

Structured data with structured communication.

4 processors 8 processors 8 processors (alternative)

task

processor

Map tasks at the beginning of the calculation in a way that minimizes interprocessor
communication.
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Mapping example

Unstructured data with unstructured communication.

proc. n

proc. 3

proc. 2

proc. 1

task 2

task 1

Map tasks at the beginning of the calculation using static load balancing algorithms.
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Mapping example

Dynamic computation and communication.

initial mapping (balanced) unbalanced situation after dynamic load balancing

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1 4 1 1 1

1 1 1 1

1 1 1 2

1 1 1 1

4 1 1 1

1 1 1 1

1 1 1 2

1 1 1 1

4 4

44

4 5

47

5

55

5

Use dynamic load balancing algorithms to periodically re-map the tasks to the processors.
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Parallel program design recipe

1 Select a suitable programming model such as the message-passing model or the
shared-memory model.

2 Partition the computation into tasks using functional decomposition or domain
decomposition.

3 Identify the communication patterns.

4 Map the tasks to the available processors.
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Parallel program design example

Sequential algorithm: array shift.

for ( i = 1; i < N; i++ )

{

a[i] = b[i - 1];

}

77 / 505



Partitioning: domain decomposition

OR

Array A

Array B

task 4 task 5task 3task 2task 1 task 6

Array A

Array B

task 3task 2task 1

0 N−1
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Communication analysis

Array A

Array B

task 5task 3task 1 task 2 task 4 task 6

Array A

Array B

task 5task 1 task 2 task 3 task 4 task 6

task 1 task 2 task 3 task 4 task 5 task 6

one array element
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Mapping

task 3task 2task 1

task 1 task 2 task 3 task 4 task 5 task 6

proc. 1 proc. 2 proc. 3

proc. 1 proc. 2 proc. 3

merge tasks within a single processor
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Mapping (alternative)

task 1

task 2

task 3

task 5

task 6

task 4 proc. 3

proc. 2

proc. 1

Bad idea!
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Parallel program on three processors

Processor 1

Send b[7] to right neighbor

for ( i = 1; i < 8; i++ )

{

a[i] = b[i-1];

}

Processor 2

Receive b[7] from left neighbor

Send b[15] to right neighbor

for ( i = 8; i < 16; i++ )

{

a[i] = b[i-1];

}

Processor 3

Receive b[15] from left neighbor

for ( i = 16; i < 24; i++ )

{

a[i] = b[i-1];

}

Loop within each processor is actually from 0 to 8 (except in processor 1, which starts at 1).
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Actual parallel program

Processor i

size = N / num_procs;

Receive b[-1] from left neighbor

Send b[size-1] to right neighbor

for ( i = 0; i < size; i++ )

{

a[i] = b[i-1];

}

Note: the first and last processors perform dummy receive and send operation, respectively.
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Exercise: parallel computation of π

The area of a circle of radius R is πR2, the area of
a square with side length 2R is 4R2. If the circle is
inscribed inside the square then the ratio of both areas
is π/4.
Monte Carlo method: if we pick N points at random
inside the square and count the number of points that
are inside the circle (M) then we can compute the ap-
proximation π ≈ 4M/N.

Open ‘[Introduction] Exercise 2 : Compute PI’ and rewrite the sequential algorithm as a
parallel algorithm using the functions provided by the minimpi.h file
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Exercise: parallel computation of π

Functions in minimpi.h

/* Initialization of parallel communication */

void init()

/* Finalization of parallel communication */

void finalize()

/* Get the total number of processors involved */

int get_total_proc_number()

/* Get the number of the current processor */

int get_my_proc_number()
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Exercise: parallel computation of π

Functions in minimpi.h

/* Send an integer to processor dest */

void send_int ( int value, int dest );

value IN Integer to be sent.

dest IN Processor number to which the integer is sent.

The destination processor must call recv int.
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Exercise: parallel computation of π

Functions in minimpi.h

/* Receive an integer from processor source */

void recv_int ( int* value, int source );

value OUT Pointer to the integer to be received.

source IN Processor from which the message is received.

The source processor must call send int.
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Exercise: parallel computation of π

Send and receive operations must match:

int i;

if ( get_my_proc_number() == 0 )

{

recv_int ( &i, 1 );

}

else

{

send_int ( i, 0 );

}
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Part II

MPI
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Introduction

Message Passing I nterface

MPI is a formal standard defining the interface of a message passing library that can be
used to implement parallel programs based on the message passing programming model.

In other words, MPI is a collection of functions (procedures) and data types that can be
used to exchange data between processes.

MPI hides the actual hardware details involved in inter-process communication from the
programmer.
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Introduction

MPI enables portability on the source code level.

That is, MPI programs can be ported to different kinds of parallel computers without
having to modify the source code; the code only needs to be re-compiled.

In some cases re-compilation is not even necessary.

Before MPI was created, each vendor of parallel computers (including SGI, Cray, IBM) had
its own message passing library. Parallel programs were generally not portable between
different parallel computers.

92 / 505



What is included in MPI?

MPI includes functions for:

• point-to-point communication;

• collective communication;

• remote memory access;

• communication context management;

• (dynamic) process management;

• parallel I/O.
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Topics explained in this course

The complete MPI standard is much too extensive to be covered here completely. This
course is therefore limited to:

• point-to-point communication;

• collective communication;

• communication context management.

These topics cover a wide range of parallel programs. The other topics are relevant mostly
for more specialized parallel programs.
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Language bindings

MPI provides formal language bindings for C and Fortran 90. Here we will use the C
bindings exclusively.

Previous versions of MPI also provided C++ bindings. However, these have been
deprecated in MPI version 2.2 and have been removed in version 3.0.

Note that informal bindings exist for other programming languages, including C++
(through Boost) and Python.
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MPI versions

The MPI standard is determined by the Message Passing Interface Forum in which many
academic and private organizations participate.

Version 1.0 of the MPI standard was released in 1994 and covered point-to-point
communication, collective communication and context management.

Version 2.0 was released in 1997 and added dynamic process management, remote memory
access and parallel I/O.
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MPI versions

Version 3.0 was released in 2012 and essentially provides extensions to the operations
defined in the earlier standards. This version also removed the C++ bindings.

Version 3.1 was released in 2015 and contains only minor improvements.

Version 4.0 was released in June 2021 and adds better support for hybrid programming
models, ‘big counts’, events, fault-tolerant computing, among other improvements.
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Backward compatibility

The MPI versions are backward compatible as far as the C bindings are concerned.

That is, a program using the C bindings of MPI 1 can be compiled with MPI 2 and MPI 3.

Note that this is only valid for source-code compatibility. Different MPI versions are
generally not binary compatible.
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MPI implementations

MPI only defines a programming interface; you need an actual implementation in order to
compile and run an MPI-based program.

There are about a dozen different MPI implementations available, many of which are aimed
at specific hardware.

Two widely used, and generic, implementations are MPICH and OpenMPI. Both are open
source which is useful when running into a bug related to a new MPI feature.
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MPICH

MPICH is (one of) the oldest MPI implementations. In fact, it was created to test concepts
that later became part of the first MPI standard.

It is maintained by the Argonne National Laboratory in collaboration with universities and
private companies, including Intel, IBM and Microsoft.

It supports single, multi-core workstations and clusters running Linux and OS X. It
implements version 3 of the MPI standard.

It is used as the basis of special MPI implementations targeting specific platforms (including
Windows) and parallel computers.

It is licensed under a BSD-like license (use it however you want).

100 / 505



OpenMPI

OpenMPI is younger than MPICH and came into being by the merger of four other MPI
implementations.

It is maintained by a consortium of academic and private institutions, some of which also
participate in MPICH.

OpenMPI supports more or less the same systems as MPICH (Linux and OS X clusters),
although there are some differences in the supported network types.

OpenMPI tends to be a bit behind MPICH in supporting the latest MPI features.

It is also licensed under a BSD-like license.
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Which implementation to use?

On a single, multi-core workstation both MPICH and OpenMPI are fine and work more or
less the same.

On a (small) cluster the choice between MPICH and OpenMPI depends on the type of the
network. It is always a good idea to run a couple of benchmarks to test which
implementation is better for you.

Large-scale parallel computers typically come with MPI implementations (possibly based on
MPICH or OpenMPI) that have been tuned for the particular architecture on which the
computers are based. Using the system-provided MPI implementation typically results in
the best performance.
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Concepts

Processes

An MPI program consists of multiple, concurrent processes, executing their own program.
Typically all processes execute the same program.

A process has its own, private memory address space and communicates with other
processes through calls to MPI functions. A process can not directly access the memory of
another process.

The processes are identified by an integer number ranging from 0 to the number of
processes minus one. This number is called the rank of the process.
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Process management

The MPI standard is mainly concerned with the communication between processes. It does
not specify how the initial processes are created and how they are bound to processors.

An MPI implementation typically provides an external program for starting an MPI program
with a given number of processors. This program is often named mpirun.

Here is an example that shows how to start an MPI program with eight processes:

mpirun -np 8 program

Note that many MPI implementations allow one to start more processes than there are
processors available.
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Local and non-local functions

The functions defined by the MPI standard can be divided into local and non-local functions.

A functions is called local if its completion depends only on the executing process and not
on the state of other processes.

A function is called non local if its completion may require the execution of some MPI
function on another process. That is, a non-local function may involve communication with
another process.

In the following slides the labels [local] and [nonlocal] will be used to indicate whether
an MPI function is local or not.
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Handles

MPI manages system memory that is used for storing internal representations of various MPI
objects. These objects are opaque; their exact definitions are hidden from an MPI program.

MPI provides indirect access to these objects through handles.

For instance, when creating a persistent communication request (more about this later),
MPI returns a handle associated with that request. This handle can be used to perform
operations involving the request.

In C the handles are essentially pointers. Different types are provided for handles associated
with different object categories.

Handles support the assignment and (in)equality operators.
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C language bindings

The C language bindings are defined in the header file <mpi.h>. This file must be included
by source files using MPI functions and/or data types.

The names of all MPI entities have the prefix MPI .

Names of functions start with an upper case character, followed by lower case characters.
The same convention is used for data type names. For instance: MPI Init.

Names of constant values consist of all upper case characters and underscores. Example:
MPI DOUBLE.
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C language bindings

An MPI program should not use the MPI prefix for the names of its own entities. This is to
avoid name collisions when a new MPI version is released.

Most MPI functions return an integer error code that indicates whether an error occurred
during the execution of the function.

When no error has occurred, the constant value MPI SUCCESS is returned. Otherwise, an
implementation-dependent error code is returned.
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Function parameters

Some MPI functions declare parameters of type void* to indicate that they can be called
with arguments of different types. Example:

MPI_Send ( const void* buffer, ... );

void example ()

{

int ibuf[4];

float fbuf[4];

MPI_Send ( ibuf, ... );

MPI_Send ( fbuf, ... );

}
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Function parameters

In the following slides the parameters of MPI functions will be marked as follows:

IN – the function only uses the parameter
OUT – the function updates the parameter
INOUT – the function both uses and updates the parameter

Parameters marked as OUT and INOUT are declared as pointers.

Parameters marked as IN can be declared as const-qualified pointers (if they represent
arrays) or as non-pointer types.
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Basics of an MPI program

#include <mpi.h>

#include <stdio.h>

int main ( int argc, char** argv )

{

/* No MPI calls allowed yet. */

MPI_Init ( &argc, &argv );

printf ( "Hello there!\n" );

MPI_Finalize ();

/* No MPI calls allowed anymore. */

return 0;

}
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Initialization

int MPI_Init ( int* argc, char*** argv ); [nonlocal]

argc INOUT Pointer to number of command-line arguments, or NULL.

argv INOUT Pointer to command-line arguments, or NULL.

The function MPI Init initializes the internal state of the MPI library. It must be called at
the beginning of an MPI program to avoid problems with process creation. It may only be
called once.

The arguments passed to MPI Init are typically pointers to the parameters of the main

function.

No MPI function may be called before MPI Init, with one exception.
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Initialization

int MPI_Initialized ( int* flag ); [local]

flag OUT Pointer to an integer that will be set to a non-zero value if MPI has been
initialized. Otherwise, it will be set to zero.

The function MPI Initialized can be used to check whether MPI has been initialized. It
is mainly useful for developers of libraries using MPI.

MPI Initialized is the only function that may be called before MPI Init.
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Finalization

int MPI_Finalize ( void ); [nonlocal]

The function MPI Finalize must be called at the end of an MPI program. It makes sure
that all outstanding communication operations are completed properly.

If you forget to call MPI Finalize, your program will most probably not finish properly.

No MPI function (except MPI Initialized) may be called after MPI Finalize has been
called.
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Differentiation between processes

Suppose that we want a communication scheme like this:

proc. 0

proc. n−1proc. 3proc. 2proc. 1

master process

communication
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Differentiation between processes

This requires that:

• the master process can identify itself;

• the master process knows how many other processes there are;

• the other processes know their rank (process number) so that they can identify their
neighboring processes (process 2 has neighbors 1 and 3).

The next slide shows an MPI program that implements this communication scheme.
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Differentiation between processes
#include <mpi.h>

int main ( int argc, char** argv )

{

int my_rank, proc_count;

MPI_Init ( &argc, &argv )

MPI_Comm_size ( MPI_COMM_WORLD, &proc_count );

MPI_Comm_rank ( MPI_COMM_WORLD, &my_rank );

if ( my_rank == 0 )

/* Communicate with processes 1, 2, ... proc_count - 1. */

else

/* Communicate with processes 0, my_rank - 1 and my_rank + 1. */

MPI_Finalize ();

return 0;

}
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Getting the current process rank

int MPI_Comm_rank ( MPI_Comm comm, int* rank ); [local]

comm IN Handle associated with a communicator.

rank OUT Pointer to an integer that will be set to the rank of the current process within
the given communicator.

The function MPI Comm rank returns the rank of the current process within a given
communicator .

A communicator can be viewed as a kind of virtual parallel computer that comprises a
number of processes plus a communication network. More about this later.

An MPI program starts with the MPI COMM WORLD communicator that contains all (initial)
processes.
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Getting the number of processes

int MPI_Comm_size ( MPI_Comm comm, int* size ); [local]

comm IN Handle associated with a communicator.

size OUT Pointer to an integer that will be set to the number of processes within the
given communicator.

The function MPI Comm size returns the number of processes within a given communicator.

When called with the MPI COMM WORLD communicator, this function returns the total
number of (initial) processes.

119 / 505



Exercise: hello world

Implement a small MPI program that prints the total number of processes and the rank of
the current process.

A skeleton implementation of the program is given in task [MPI] Exercise 1: Hello World .

If you want to run your program on your local computer outside the web-based INGInious
environment use make to build the executable program and mpirun to start the executable:

mpirun -np N 01-hello-world-mpi
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Communication

MPI provides a collection of functions for exchanging data between processes.

These functions can be divided into two groups:

1 point-to-point communication functions;

2 collective communication functions.

The first group deals with exchanging data between pairs of processes.

The second deals with exchanging data between multiple processes.
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Point-to-point communication

Point-to-point communication involves pairs of processes. One process sends data and the
other process receives those data.

The sending process is called the source and the receiving process is called the destination.
The data to be sent/received are referred to as the message.

data
source

process
destination
process

MESSAGE
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Point-to-point example
#include <mpi.h>

int main ( int argc, char** argv )

{

MPI_Status status;

int my_rank, value = 1;

MPI_Init ( &argc, &argv );

MPI_Comm_rank ( MPI_COMM_WORLD, &my_rank );

if ( my_rank == 0 )

MPI_Send ( &value, 1, MPI_INT, 1, 0, MPI_COMM_WORLD );

else

MPI_Recv ( &value, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &status );

MPI_Finalize ();

return 0;

}
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Point-to-point example

The example program only works when started with two processes.

Note that a send operation on the source process must be matched by a receive operation
on the destination process.

A program will “hang” if this is not the case.

In other words, any pair of send/receive operations must be balanced: for each send there
must be a matching receive in the program.
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Sending a message

int MPI_Send ( const void* buf, int count, MPI_Datatype type,

int dest, int tag, MPI_Comm comm ); [nonlocal]

buf IN A pointer to the data to be sent.

count IN The number of data elements to be sent.

type IN The type of the data elements.

dest IN The rank of the destination process.

tag IN The tag associated with the message.

comm IN The communicator to be used.

The function MPI Send sends zero or more data elements to the specified destination
process.

The destination process must execute a matching receive operation.
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Sending a message

The buf parameter can point to a single value or an array containing multiple values. The
number of values, called elements, is specified by the count parameter.

The type parameter specifies the type of the elements to be sent. It can be one of the
following constants:

MPI Constant C Datatype

MPI CHAR char

MPI SHORT short

MPI INT int

MPI LONG long

MPI FLOAT float

MPI DOUBLE double
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Sending a message

The MPI type that is specified must match the actual type of the data elements to be sent.
The compiler does not check this!

void example ()

{

int buffer[3];

MPI_Send ( buffer, 3, MPI_DOUBLE, ... ); /* Oops, wrong type. */

}

It is possible to define new MPI data types but that is not explained here.
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Sending a message

The tag parameter of the MPI Send function can be used to associate an user-defined
identifier (an arbitrary non-zero integer) with a message.

The destination process can use the tag to receive messages in a particular order that is not
necessarily the same as the order in which the messages were sent.

You do not need to use the tag; simply set it to zero (or some other value) in all send and
receive operations if you want to receive messages in the order that they were sent.

More about message tags in later slides.
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Message envelope

MPI extracts the data from the buffer and creates an envelope that provides the
communication system and the receiver with the following information:

front

back

source

data

destination

communicator

tag

destinationsource

envelope

The envelope and the data together form the message.
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Message envelope

An MPI message envelope can be compared to an envelope containing a (paper) letter:

• the source on the back of the envelope is like the return address of the letter;

• the destination is like the street number of the adressee;

• the communicator is equivalent with the street and city name;

• the tag is equivalent with a logo on or color of the envelope containing the letter.
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Receiving a message

int MPI_Recv ( void* buf, int count, MPI_Datatype type,

int source, int tag,

MPI_Comm comm, MPI_Status* stat ); [nonlocal]

buf OUT A pointer to an array or value in which the data are to be received.

count IN The size of buf (number of elements).

type IN The type of the data elements.

source IN The rank of the source process.

tag IN The tag associated with the message.

comm IN The communicator to be used.

stat OUT A pointer to a status object.

The function MPI Recv receives zero or more data elements from the specified source
process. The source process must execute a matching send operation.
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Receiving a message

The buf parameter can point to a single value or an array. The size of the buffer is
specified by the count parameter.

Note that the buffer (and also the count parameter) may be larger than the actual number
of data elements that have been received. This can be useful if the receiving process does
not know the exact number of elements to be received beforehand.

The source parameter specifies the rank of the source process. It can be set to the special
value MPI ANY SOURCE to indicate that the message may be received from any process.
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Receiving a message

The tag parameter can be used to indicate that only messages with a matching tag value
are to be received; messages with a non-mathcing tag will be ignored.

The special value MPI ANY TAG can be used as a kind of wildcard value; it will match
messages with any tag.

The stat parameter must point to a MPI Status object. This opaque object is filled with
information from the message envelope:

• the rank of the source process;

• the tag provided by the source process;

• and the number of data elements received.
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Status objects

The source rank and the message tag are stored in the fields MPI SOURCE and MPI TAG,
respectively, of an MPI Status object.

The function MPI Get count can be used to determine how many data elements have
actually been received. This function only needs to be called if the receiving process does
not know the exact number of data elements that have been sent.

If the status object is not used, one may specify the special value MPI STATUS IGNORE for
the stat parameter. Example:

MPI_Recv ( buf, 4, MPI_INT, 0, 0,

MPI_COMM_WORLD, MPI_STATUS_IGNORE );
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Example use of status objects

The following slide shows part of an MPI program that makes use of status objects.

The program implements a client-server model in which one process waits for data from
another process, performs some kind of (unspecified) transformation on the data, and sends
it back to the source process.

The code fragment shown is executed by the server process.
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Example use of status objects

void run_server ()

{

const int max_len = 1024;

double data[max_len];

int count;

MPI_Status status;

while ( 1 )

{

MPI_Recv ( data, max_len, MPI_DOUBLE, MPI_ANY_SOURCE,

MPI_ANY_TAG, MPI_COMM_WORLD, &status );

MPI_Get_count ( &status, MPI_DOUBLE, &count );

transform ( data, count );

MPI_Send ( data, count, MPI_DOUBLE, status.MPI_SOURCE,

status.MPI_TAG, MPI_COMM_WORLD );

}

}
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Message ordering

MPI guarantees that two or more messages sent from a single source process to a single
destination process arrive in the order that they have been sent.

In other words, messages sent between a pair of processes do not overtake each other.

No such guarantee is provided for messages that have been sent from different source
processes to the same destination process; those message can arrive in any order.
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Message ordering

Source Process

int dest = 0;

int tag1 = 1, tag2 = 2;

MPI_Send ( ..., dest, tag1,

... );

MPI_Send ( ..., dest, tag2,

... );

Destination Process

int source = 1;

MPI_Recv ( ..., source, MPI_ANY_TAG,

... );

MPI_Recv ( ..., source, MPI_ANY_TAG,

... );

Here the destination process will first receive the message with tag1 and then the message
with tag2.
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Message ordering

Source Process 1

int dest = 0, tag = 0;

MPI_Send ( ..., dest, tag, ... );

Source Process 2

int dest = 0, tag = 1;

MPI_Send ( ..., dest, tag, ... );

Destination Process

MPI_Recv ( ..., MPI_ANY_SOURCE, MPI_ANY_TAG, ... );

MPI_Recv ( ..., MPI_ANY_SOURCE, MPI_ANY_TAG, ... );

Here the destination process might receive the two messages in any order. In fact, the order
may vary from run to run.
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Message ordering

Messages from different processes can arrive in any order:
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B

MESSAGE
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Blocking communication operations

The function MPI Send will – in principle – not return until the destination process has
called MPI Recv, and the other way around.

These functions are said to perform blocking communication operations.

A program may end up in a deadlock situation if calls to MPI Send and MPI Recv are not
ordered correctly.

This is shown in the example program on the next slide. The program is meant to be run
with two processes.
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Deadlock example
int main ( int argc, char** argv )

{

int my_rank, other_rank;

MPI_Init ( &argc, &argv );

MPI_Comm_rank ( MPI_COMM_WORLD, &my_rank );

if ( my_rank == 0 )

other_rank = 1;

else

other_rank = 0;

MPI_Send ( ..., other_rank, ... );

MPI_Recv ( ..., other_rank, ... );

MPI_Finalize ();

return 0;

}
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Deadlock example

The problem is that both processes execute the send/recv operations in the same order.

The solution is to swap the send/recv operations on one process so that each send
operation is matched by a receive operation on the other process.

This is shown in the modified example on the next slide.
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Deadlock-free example

if ( my_rank == 0 )

{

other_rank = 1;

MPI_Send ( ..., other_rank, ... );

MPI_Recv ( ..., other_rank, ... );

}

else

{

other_rank = 0;

MPI_Recv ( ..., other_rank, ... );

MPI_Send ( ..., other_rank, ... );

}
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Exercise: pass data around

Implement an MPI program in which a single integer is passed around all processes.

That is, the process with rank zero assigns the initial value to the integer. It then passes
the integer to the process with rank one.

This process, in turn, passes the integer to the process with rank two.

This continues until the process with rank (p − 1), with p the number of processes. This
last process passes the integer back to the process with rank zero.

Finally, the process with rank zero prints the integer to the terminal and the program ends.

Test the program with one and more processes.
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Hints

Use [MPI] Exercise 2 : Pass Data (blocking point-to-point communication) as the basis of
your implementation.

Use the functions MPI Send and MPI Recv to pass the integer from one process to the next.

Use the function MPI Comm rank to determine from which process the integer is to be
received, and to which process the integer is to be sent.

Use the function MPI Comm size to determine the total number of processes.
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Non-blocking point-to-point communication

The point-to-point communication functions considered so far are blocking in nature: they
will not return until the message exchange has been completed.

Blocking operations are simple to understand but can lead to deadlock.

MPI also provides non-blocking point-to-point communication procedures that return
immediately. You must check later whether the message exchange has been completed.

Non-blocking operations are more difficult to understand but can avoid deadlock and
increase performance.
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Communication metaphor

message to be send

latency: time to establish a connection

i.e. time to dial the fax−number and wait for response

transfer time: time to transmit the message content

i.e. time to process all the pages that contain the message
bandwidth: transfer time divided by the size of the message

process
sendingMPI

hostess

communication network

fax

The letters on this

the actual message.

The paper can be 

viewed as the buffer

that contains the

message

paper represent
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Blocking send illustration

fax
fax

fax

fax fax
fax

post send wait until paper is processed

wait until paper is processed

Happy end

return to work
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Non-blocking send illustration

fax
fax

fax fax

fax

fax

fax

Happy end

post send, immediate return sender can continue with work

ask if ready continue with work

retreive paper (buffer)

ask if ready

Sorry, your

message has not

been processed

I can

continue with

my work

Then I

continue with

my work

Yep, it

has been

processed
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Non-blocking example
void nonblocking ()

{

int my_rank, other_rank;

MPI_Request req;

MPI_Comm_rank ( MPI_COMM_WORLD, &my_rank );

if ( my_rank == 0 )

other_rank = 1;

else

other_rank = 0;

MPI_Isend ( ..., other_rank, ..., &req );

MPI_Recv ( ..., other_rank, ... );

MPI_Wait ( &req, MPI_STATUS_IGNORE );

}

Note: no deadlock because the function MPI Isend returns immediately.
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Non-blocking send

int MPI_Isend ( const void* buf, int count, MPI_Datatype type,

int dest, int tag,

MPI_Comm comm, MPI_Request* req ); [local]

buf IN A pointer to the data to be sent.

count IN The number of data elements to be sent.

type IN The type of the data elements.

dest IN The rank of the destination process.

tag IN The tag associated with the message.

comm IN The communicator to be used.

req OUT A pointer to a request handle.

The function MPI Isend starts a non-blocking send operation. It returns immediately.

The destination process must execute a matching receive operation.
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Non-blocking send

The function MPI Isend is similar to the function MPI Send. There are two differences:

• the function MPI Isend does not wait for the data to have been sent;

• the function MPI Isend returns a request handle that can be used to check the status
of the send operation.

The buffer specified in a call to MPI Isend must exist until MPI has signalled that the
operation has been completed. This is the responsibility of the programmer!
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Premature free of buffer

void example ()

{

int count = 100;

double* buffer = malloc ( count * sizeof(double) );

MPI_Request req;

MPI_Isend ( buffer, count, MPI_DOUBLE, 0, 0,

MPI_COMM_WORLD, &req );

free ( buffer ); /* Error: buffer still in use by MPI. */

MPI_Request_wait ( &req, MPI_STATUS_IGNORE );

}
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Correct free of buffer

void example ()

{

int count = 100;

double* buffer = malloc ( count * sizeof(double) );

MPI_Request req;

MPI_Isend ( buffer, count, MPI_DOUBLE, 0, 0,

MPI_COMM_WORLD, &req );

MPI_Request_wait ( &req, MPI_STATUS_IGNORE );

free ( buffer ); /* OK: buffer no longer in use. */

}
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Non-blocking receive

int MPI_Irecv ( void* buf, int count, MPI_Datatype type,

int source, int tag,

MPI_Comm comm, MPI_Request* req ); [local]

buf OUT A pointer to an array or value in which the data are to be received.

count IN The size of buf (number of elements).

type IN The type of the data elements.

source IN The rank of the source process.

tag IN The tag associated with the message.

comm IN The communicator to be used.

req OUT A pointer to a request handle.

The function MPI Irecv starts a non-blocking receive operation. It returns immediately.

The source process must execute a matching send operation.
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Non-blocking receive

The function MPI Irecv is similar to the function MPI Recv. Again, there are two
differences:

• the function MPI Irecv does not wait for the data to have been received;

• the function MPI Irecv returns a request handle that can be used to check the status
of the send operation.

The buffer specified in a call to MPI Irecv must exist until MPI has signalled that the
operation has been completed.
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Matching send/receive operations

A non-blocking send operation executed by a source process must be matched by a blocking
or non-blocking receive operation executed by the destination process.

Conversely, a non-blocking receive operation must be matched by a blocking or
non-blocking send operation.

If the above conditions are not satisfied, a program will end up in a deadlock situation, even
when it uses non-blocking operations.
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Non-blocking example 1

Process 0

int other = 1;

MPI_Request req;

MPI_Isend ( ..., other, ...,

&req );

MPI_Recv ( ..., other, ... );

MPI_Wait ( &req, ... );

Process 1

int other = 0;

MPI_Request req;

MPI_Isend ( ..., other, ...,

&req );

MPI_Recv ( ..., other, ... );

MPI_Wait ( &req, ... );

MPI Isend matches MPI Recv; no deadlock.
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Non-blocking example 2

Process 0

int other = 1;

MPI_Request req;

MPI_Irecv ( ..., other, ...,

&req );

MPI_Send ( ..., other, ... );

MPI_Wait ( &req, ... );

Process 1

int other = 0;

MPI_Request req;

MPI_Irecv ( ..., other, ...,

&req );

MPI_Send ( ..., other, ... );

MPI_Wait ( &req, ... );

MPI Irecv matches MPI Send; no deadlock.
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Non-blocking example 3

Process 0

int other = 1;

MPI_Request req[2];

MPI_Irecv ( ..., other, ...,

&req[0] );

MPI_Isend ( ..., other, ...,

&req[1] );

MPI_Waitall ( 2, req, ... );

Process 1

int other = 0;

MPI_Request req[2];

MPI_Irecv ( ..., other, ...,

&req[0] );

MPI_Isend ( ..., other, ...,

&req[1] );

MPI_Waitall ( 2, req, ... );

MPI Irecv matches MPI Isend; no deadlock.
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Non-blocking example 4

Process 0

int other = 1;

MPI_Request req;

MPI_Send ( ..., other, ... );

MPI_Irecv ( ..., other, ...,

&req );

MPI_Wait ( &req, ... );

Process 1

int other = 0;

MPI_Request req;

MPI_Send ( ..., other, ... );

MPI_Irecv ( ..., other, ...,

&req );

MPI_Wait ( &req, ... );

Deadlock in MPI Send.
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Request handles

The functions MPI Isend and MPI Irecv return a handle to an opaque communication
request object in their last parameter.

Request objects are allocated and managed by MPI. Programs obtains handles to request
objects, not the objects themselves.

A program can query the status of a request object and the corresponding communication
operation through various MPI functions; see next slides.

The special value MPI REQUEST NULL is used to indicate an invalid request handle. MPI
functions that deallocate request objects set their handle to this value.
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Checking request handles

The following functions can be used to check one or more request handles:

MPI Test Checks whether one non-blocking operation has completed.
MPI Wait Waits until one non-blocking operation has completed.
MPI Waitall Waits until multiple non-blocking operations have completed.

MPI actually provides more, similar functions, but these are not considered here.
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Testing a single request

int MPI_Test ( MPI_Request *req,

int *flag, MPI_Status *stat ); [local]

req INOUT Pointer to a request handle.

flag OUT Pointer to an integer flag that is set to the result of the test.

stat OUT Pointer to a status object.

The function MPI Test checks whether the given request has completed. If so, the request
object is deallocated and the handle pointed to by req is set to MPI REQUEST NULL.

Otherwise the request handle is not modified.
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Testing a single request

If the request has completed, then the flag parameter is set to a non-zero value; otherwise
it is set to zero.

The status object pointed to by the stat parameter is filled with information about the
message if the request has completed. Otherwise it is untouched.

Example:

MPI_Request req;

int flag = 0;

MPI_Isend ( ..., &req );

while ( ! flag )

MPI_Test ( &req, &flag, MPI_STATUS_IGNORE );
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Waiting for a single request

int MPI_Wait ( MPI_Request *req, MPI_Status *stat ); [local]

req INOUT Pointer to a request handle.

stat OUT Pointer to a status object.

The function MPI Wait waits until the given communication request has completed. It also
deallocates the request object and sets the handle pointed to by req to MPI REQUEST NULL.

The status object pointed to by the stat parameter is filled with information about the
message. This parameter may be set to MPI STATUS IGNORE.
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Waiting for a single request

Example use of MPI Wait:

MPI_Request req;

MPI_Status stat;

MPI_Irecv ( ..., &req );

/* Do something else ... */

MPI_Wait ( &req, &stat );
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Waiting for multiple requests

int MPI_Waitall ( int count, MPI_Request *req,

MPI_Status *stat ); [local]

count IN Number of requests.

req INOUT Array of request handles.

stat OUT Array of status objects.

The function MPI Waitall waits until multiple communication requests have completed. It
deallocates the associated request objects and sets the handles stored in the req array to
MPI REQUEST NULL.

The status objects in the stat array are filled with information about the messages. This
parameter may be set to MPI STATUSES IGNORE.
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Waiting for multiple requests

Example use of MPI Waitall:

MPI_Request req[2];

int my_rank;

MPI_Comm_rank ( MPI_COMM_WORLD, &my_rank );

MPI_Irecv ( ..., my_rank - 1, ..., &req[0] );

MPI_Irecv ( ..., my_rank + 1, ..., &req[1] );

/* Do something else ... */

MPI_Waitall ( 2, req, MPI_STATUSES_IGNORE );
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Performance tip

When exchanging data using non-blocking communication operations, try to execute the
receive operations as early as possible.

This reduces the communication overhead as MPI will be able to copy the send data
directly into the receive buffer.

Otherwise the send data is first stored in a queue on the receiving process, and is later
copied into the receive buffer.

This is illustrated in the next slide.

171 / 505



Performance tip
MPI_Request send_req[2];

MPI_Request recv_req[2];

double* send_buf[2];

double* recv_buf[2];

/* Initialize the buffers ... */

MPI_Irecv ( recv_buf[0], ..., &recv_req[0] );

MPI_Irecv ( recv_buf[1], ..., &recv_req[1] );

/* Do computations not involving receive data ... */

MPI_Isend ( send_buf[0], ..., &send_req[0] );

MPI_Isend ( send_buf[1], ..., &send_req[1] );

MPI_Waitall ( 2, recv_req, MPI_STATUSES_IGNORE );

/* Use receive data ... */

MPI_Waitall ( 2, send_req, MPI_STATUSES_IGNORE );
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Exercise: pass data around (2)

Modify the MPI program from previous exercise so that it uses non-blocking communication
operations instead of blocking operations. You can use [MPI] Exercise 3 : Pass Data
(non-blocking point-to-point communication) as a skeleton for your program.

Does the use of non-blocking operations bring any benefits in this case?
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Exercise: circular array shift

Use non-blocking point-to-point communication operations to implement a parallel, circular
array shift.

Here is the serial implementation of the algorithm:

const int N = 100;

double a[N];

double t;

int i;

t = a[N - 1];

for ( i = N - 1; i >= 1; i-- )

a[i] = a[i - 1];

a[0] = t;
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Exercise: circular array shift

In the parallel implementation of the program each process stores a sub-section of the array
a. The processes need to exchange data in order to process the first and last element in
their sub-array.

[MPI] Exercise 4 : Circular Shift contains an initial implementation of the parallel program.
Edit this file to complete the implementation.

Try to start the non-blocking receive operations as soon as possible.

The original array and the shifted array are printed by the program. Try to print the array
elements in the correct order. That is, the processes should print their sub-section one after
another.
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Collective communication

In contrast to point-to-point communication, collective communication involves all
processes associated with a communicator.

Example collective communication operations:

• all processes determine the maximum value of a distributed set of numbers;

• one process sends a message to all other processes;

• all processes wait until a specific point in a program has been reached.
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Collective communication

A collective communication function must be called by all processes in a communicator. A
program will end up in a deadlock situation if one or more processes do not participate in a
collective communication operation.

Example:

int my_rank;

MPI_Comm_rank ( MPI_COMM_WORLD, &my_rank );

MPI_Barrier ( MPI_COMM_WORLD ); /* OK */

if ( my_rank != 0 )

MPI_Barrier ( MPI_COMM_WORLD ); /* Deadlock */

More about MPI Barrier later.
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Collective communication

A collective communication function does not have a message tag parameter; collective
communication function calls are matched by the order in which they are executed.

In particular, point-to-point communication operations do not interfere with collective
communication operations.

Example:

int other_rank = ...;

MPI_Request req;

MPI_Isend ( ..., other_rank, ..., &req );

MPI_Barrier ( MPI_COMM_WORLD );

MPI_Wait ( &req, MPI_STATUSES_IGNORE );
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Collective communication categories

Synchronization

Barrier Synchronize all processes in a communicator.

Global reduction

Reduce Combine a distributed set of numbers into a single number using different
types of operations (max, min, sum, etc.).

Data transfer

Broadcast Send data from one process to all other processes.

Gather Collect data from all processes on one process.

Scatter Send different data from one process to all other processes.
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Synchronization

int MPI_Barrier ( MPI_Comm comm ); [nonlocal]

comm IN The communicator associated with the processes to by synchronized.

The function MPI Barrier waits until all processes in the given communicator have called
this function.

This function can be a handy debugging aid as it makes it easier to understand the flow of
execution in a parallel program.

Most (well-designed) parallel programs do not need to call this function.
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Global reduction

The global reduction functions in MPI combine a distributed data set into a single number
using various types of reduction operations, such as min, max and sum.

There are two reduction functions: MPI Reduce and MPI Allreduce.

The main difference between these two is that the first only makes the result available on a
single process. The second makes the result available on all processes.

MPI Allreduce is similar to MPI Reduce followed by a broadcast (more about that later).
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Global reduction

Both MPI Reduce and MPI Allreduce can apply a reduction operation on multiple values
stored in an array; the reduction operation is applied element-wise across all processes.
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Global reduction example

The following example shows how to compute the maximum value across all processes. The
maximum value is only made available on the process with rank root.

const int root = 0;

double value = ...;

double result;

int my_rank;

MPI_Comm_rank ( MPI_COMM_WORLD, &my_rank );

MPI_Reduce ( &value, &result, 1, MPI_DOUBLE, MPI_MAX, root,

MPI_COMM_WORLD );

if ( my_rank == root )

printf ( "The maximum is: %g.\n", result );
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Global reduction example

Here is the same program (simplified) executed with two processes.

Process 0

const int root = 0;

double value = 1.0;

double result;

MPI_Reduce ( &value, &result, ...,

MPI_MAX, root, ... );

/* The result is 2.0. */

Process 1

const int root = 0;

double value = 2.0;

double result;

MPI_Reduce ( &value, &result, ...,

MPI_MAX, root, ... );

/* The result is undefined. */
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Global reduction example

Here is the same program, but with MPI Allreduce instead of MPI Reduce.

Process 0

double value = 1.0;

double result;

MPI_Allreduce ( &value, &result,

..., MPI_MAX, ... );

/* The result is 2.0. */

Process 1

double value = 2.0;

double result;

MPI_Allreduce ( &value, &result,

..., MPI_MAX, ... );

/* The result is 2.0. */

Note that no root process has to be specified anymore, as the result is made available on all
processes.
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Global reduction

int MPI_Reduce ( const void* send_buf, void* recv_buf, int count,

MPI_Datatype type, MPI_Op op, int root,

MPI_Comm comm ); [nonlocal]

send buf IN A pointer to the send buffer containing the data to be reduced.

recv buf OUT A pointer to the receive buffer that is filled with the result(s).

count IN The number of data elements in send buf and recv buf.

type IN The type of the elements stored in the send/receive buffer.

op IN The reduction operation to be performed.

root IN The rank of the process where the results are to be made available.

comm IN The communicator to be used.
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Global reduction

The parameters send buf and recv buf may point to a single variable or to an array with
multiple elements. In the latter case, the reduction is performed for each array element
independently.

Example:

Process 0

const int root = 0;

const int sbuf[2] = { 1, 2 };

int rbuf[2];

MPI_Reduce ( sbuf, rbuf, 2, ...,

MPI_MAX, root, ... );

/* rbuf[0] equals 2, and

rbuf[1] equals 4. */

Process 1

const int root = 0;

const int sbuf[2] = { 2, 4 };

int rbuf[2];

MPI_Reduce ( sbuf, rbuf, 2, ...,

MPI_MAX, root, ... );

/* Contents of rbuf are undefined. */
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Global reduction

The parameter op determines what kind of reduction operation is to be performed. It can
have the following values:

MPI MAX Maximum

MPI MIN Minimum

MPI SUM Sum

MPI PROD Product

MPI provides more reduction operations, but these are not discussed here. The operations
listed above are the most commonly used ones.
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Global reduction

int MPI_Allreduce ( const void* send_buf, void* recv_buf,

int count, MPI_Datatype type,

MPI_Op op, MPI_Comm comm ); [nonlocal]

send buf IN A pointer to the send buffer containing the data to be reduced.

recv buf OUT A pointer to the receive buffer that is filled with the result(s).

count IN The number of data elements in send buf and recv buf.

type IN The type of the elements stored in the send/receive buffer.

op IN The reduction operation to be performed.

comm IN The communicator to be used.
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Global reduction

The function MPI Allreduce is similar to MPI Reduce, except that the former makes the
results available on all processes. The root parameter is therefore not present.

If the results are only needed on one process, then it is more efficient to use MPI Reduce.
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Performance aspects

Use of the functions MPI Reduce or MPI Allreduce has a negative impact on the parallel
scalability of a program.

The main reason is that the execution time of these functions increases with the number of
processors. To be precise, their time complexity is O (log(p)) with p the number of
processes.

One should therefore try to avoid performing global reduction operations, although that is
certainly not always possible.

At the very least one should try to minimize the number of calls to MPI Reduce and
MPI Allreduce possibly by performing multiple reduction operations with one function call.
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Performance aspects

To illustrate the last point, suppose that one wants to compute both the maximum and
minimum of a set of numbers distributed across the processes.

Here is how to do that efficiently with one function call:

const int value = ...;

const int sbuf[2] = { value, -value };

int rbuf[2];

int minval, maxval;

MPI_Allreduce ( sbuf, rbuf, 2, MPI_INT,

MPI_MAX, MPI_COMM_WORLD );

maxval = rbuf[0];

minval = -rbuf[1];
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Performance aspects

The previous performance-related remarks also apply to (most) other collective
communication operations.

Avoiding collective communication operations will help increase the parallel performance of
a parallel program.

If you can not avoid them, however, then try to use the collective communication functions
provided by MPI instead of rolling your own. Sometimes MPI can take advantage of special
hardware features to limit the performance impact of collective operations.

Also try to aggregate multiple operations in one function call to limit the latency-related
overhead.
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Data transfer

There are (approximately) three types of collective operations that transfer data between all
processes associated with a communicator:

Broadcast Send data from one process to all other processes.

Gather Collect different data from all processes on one process.

Scatter Send different data from one process to all other processes.

MPI provides a few more collective data transfer operations, but those are not considered
here; most programs can do without them.
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Data transfer
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Broadcast

int MPI_Bcast ( void* buffer, int count, MPI_Datatype type,

int root, MPI_Comm comm ); [nonlocal]

buffer INOUT Send/receive buffer (see below).

count IN Number of elements in the buffer.

type IN The type of the elements in the buffer.

root IN The rank of the broadcasting process.

comm IN The communicator.

The function MPI Bcast sends count data elements from the process with rank root to all
other processes.
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Broadcast

On the process with rank root, the buffer parameter must contain the data to be
broadcast.

On the other processes, the buffer parameter will contain those data when the function
returns.

The example on the next slide shows how to broadcast two integers from the process with
rank 0 to all other processes.
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Broadcast example

const int root = 0;

int my_rank;

int buffer[2];

MPI_Comm_rank ( MPI_COMM_WORLD, &my_rank );

if ( my_rank == root )

{

buffer[0] = 1;

buffer[1] = 2;

}

MPI_Bcast ( buffer, 2, MPI_INT, root, MPI_COMM_WORLD );

At the end of the program, the array buffer contains the values 1 and 2 on all processes.
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Gather

int MPI_Gather ( const void* send_buf, int send_count,

MPI_Datatype send_type,

void* recv_buf, int recv_count,

MPI_Datatype recv_type, int root,

MPI_Comm comm ); [nonlocal]

send buf IN Send buffer containing data to be sent.

send count IN The number of data elements in the send buffer.

send type IN The type of the elements in the send buffer.

recv buf OUT Receive buffer.

recv type IN The type of the elements in the receive buffer.

recv count IN The number of data elements to be received from each process.

root IN The rank of the process to receive the data.

comm IN The communicator to be used.
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Gather

The function MPI Gather collects data from all processes on the process with rank root.

Each process, including root, must send the same number of data elements stored in
send buf; the parameters send count and send type must be the same on all processes.

The process with rank root receives the data elements in the buffer recv buf in process
rank order. That is, the first send count elements contain the data from rank 0; the next
send count elements contain the data from rank 1; etc.
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Gather

The parameter recv count must be equal to the number of data elements to be received
from each processor. In most cases it is equal to send count.

There are exceptions possible, but these are not explained here.

The parameter recv type is typically equal to send type.

The parameters recv buf, recv count and recv type are only significant on the process
with rank root.

The next slide shows an example in which all processes send two integers to the process
with rank 0.
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Gather example

const int root = 0;

int* recv_buf = NULL;

int send_buf[2];

int my_rank;

int proc_count;

MPI_Comm_rank ( MPI_COMM_WORLD, &my_rank );

MPI_Comm_size ( MPI_COMM_WORLD, &proc_count );

send_buf[0] = my_rank + 1;

send_buf[1] = my_rank + 2;

if ( my_rank == root )

recv_buf = malloc ( proc_count * 2 * sizeof(int) );

MPI_Gather ( send_buf, 2, MPI_INT, recv_buf, 2, MPI_INT,

root, MPI_COMM_WORLD );
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Scatter

int MPI_Scatter ( const void* send_buf, int send_count,

MPI_Datatype send_type,

void* recv_buf, int recv_count,

MPI_Datatype recv_type, int root,

MPI_Comm comm ); [nonlocal]

send buf IN Send buffer containing data to be sent.

send count IN The number of data elements in the send buffer.

send type IN The type of the elements in the send buffer.

recv buf OUT Receive buffer.

recv type IN The type of the elements in the receive buffer.

recv count IN The number of data elements to be received from each process.

root IN The rank of the process to send the data.

comm IN The communicator to be used.
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Scatter

The function MPI Scatter performs the reverse operation performed by MPI Gather. That
is, it sends data from the process with rank root to all other processes.

It is similar to MPI Bcast, except that it sends different data to each process.

Each process, including root, must receive the same number of data elements that are
stored in recv buf; the parameters recv count and recv type must be the same on all
processes.

The process with rank root sends the data elements in the buffer send buf in process rank
order. That is, the first send count elements contain the data for rank 0; the next
send count elements contain the data for rank 1; etc.
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Scatter

The parameter send count will be equal to recv count in most cases. Likewise,
send type is typically equal to recv count. There are exceptions possible, but these are
not explained here.

The parameters send buf, send count and send type are only significant on the process
with rank root.

The next slide shows an example in which process 0 sends two integers to all other
processes.

205 / 505



Scatter example
const int root = 0;

int* send_buf = NULL;

int recv_buf[2];

int i, my_rank, proc_count;

MPI_Comm_rank ( MPI_COMM_WORLD, &my_rank );

MPI_Comm_size ( MPI_COMM_WORLD, &proc_count );

if ( my_rank == root )

{

send_buf = malloc ( proc_count * 2 * sizeof(int) );

for ( i = 0; i < 2 * proc_count; i++ )

send_buf[i] = i;

}

MPI_Scatter ( send_buf, 2, MPI_INT, recv_buf, 2, MPI_INT,

root, MPI_COMM_WORLD );
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Scatter example

The previous example can also be implemented with point-to-point operations. This is
shown in the next slide.

Note that the use of MPI Scatter is more efficient as – at the very least – it reduces the
function-call overhead.

This also applies to MPI Gather.
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Scatter example
const int root = 0;

const int tag = 0;

int send_buf[2];

int recv_buf[2];

int i, my_rank, proc_count;

MPI_Comm_rank ( MPI_COMM_WORLD, &my_rank );

MPI_Comm_size ( MPI_COMM_WORLD, &proc_count );

if ( my_rank == root )

for ( i = 0; i < proc_count; i++ ) {

send_buf[0] = 2 * i + 0;

send_buf[1] = 2 * i + 1;

MPI_Send ( send_buf, 2, MPI_INT, i, tag, MPI_COMM_WORLD );

}

else

MPI_Recv ( recv_buf, 2, MPI_INT, root, tag,

MPI_COMM_WORLD, MPI_STATUS_IGNORE );
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Exercise: Gram-Schmidt algorithm

Implement a parallel program that executes the Gram-Schmidt algorithm to make the
columns of an N × N matrix A orthonormal through a series of dot products and vector
subtractions.

The next slide shows the Gram-Schmidt algorithm in pseudo code. Note that Aj denotes
the j-th column of the matrix A.

The two slides after that show a serial implementation of the Gram-Schmidt algorithm.
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Gram-Schmidt algorithm

do j = 1,N

do k = 1, j − 1

ck := AT
k · Aj

end do

Aj := Aj −
∑j−1

k=1 ck · Ak

Aj :=
Aj

|Aj |

end do
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Serial Gram-Schmidt implementation (1)
double a[N][N];

double c[N];

double t;

int i, j, k;

for ( j = 0; j < N; j++ )

{

for ( k = 0; k < j; k++ )

{

c[k] = 0.0;

/* Compute the dot products with the previous columns. */

for ( i = 0; i < N; i++ )

c[k] += a[i][k] * a[i][j];

}

/* Continued on the next slide ... */
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Serial Gram-Schmidt implementation (2)

/* ... continued from the previous slide. */

for ( k = 0; k < j; k++ )

for ( i = 0; i < N; i++ )

a[i][j] -= c[k] * a[i][k];

/* Normalize this column. */

for ( i = 0, t = 0.0; i < N; i++ )

t += a[i][j] * a[i][j];

t = 1.0 / sqrt ( t );

for ( i = 0; i < N; i++ )

a[i][j] *= t;

}
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Parallel Gram-Schmidt implementation

In the parallel implementation of the Gram-Schmidt algorithm, the matrix A is distributed
row-wise over the processors:

This means that each process stores N
p rows, with p the number of processes.
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Hints

Use the sequential implementation of the Gram-Schmidt algorithm given in task [MPI]
Exercise 6 : Gram-Schmidt Algorithm as the basis of your parallel version.

Use the functions alloc matrix and free matrix to create and destroy a matrix with
arbitrary dimensions.

Use a global reduction operation to implement a parallel dot product.

What performance do you get?
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Exercise: random numbers

Implement a parallel program that generates a stream of uniform random numbers within
the range [0, 1] within each process.

The program should stop if it has found ten numbers that are smaller than ε = 1 · 10−7.

When the program has found ten numbers (or more), the master process (with rank zero)
should collect all found numbers and print them to the terminal.
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Exercise: hints

Use [MPI] Exercise 6 : Random Number Generator as the starting point for your program.
This file implements a sequential version of the program.

Use the provided function next random to generate the stream of random numbers. This
function will set a different random seed for each process. Without this, no speedup is
possible. Why not?

Use collective MPI functions to determine when the program should stop and to collect the
results on the master.

Measure the parallel speedup of your program.

What can you do to improve the performance?
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Exercise: obtained speedup
This is the speedup obtained with one particular implementation of the program on a
12-core machine.

 0
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Can you get a similar speedup?
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Communicators

A communicator can be viewed as a virtual network through which a group of processes can
communicate with each other.

Processes within a communicator are ordered and are identified by their rank within that
communicator.

Processes may participate in multiple communicators in which they have a different rank.

When MPI is initialized it creates the communicator MPI COMM WORLD that contains all
initial processes.
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Communicators

Because a communicator defines its own virtual network, communication operations within
different communicators do not interfere with each other.

Consider this code:

MPI_Comm comm1, comm2;

/* Initialize comm1 and comm2 ... */

MPI_Recv ( ..., comm1, ... );

MPI_Recv ( ..., comm2, ... );

The first receive operation only matches a send operation within the communicator comm1.
Likewise, the second receive operation only matches a send operation within comm2.
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Why use communicators?

Why use other communicators than MPI COMM WORLD?

• Modularity: interference between communications performed in different program units
or libraries can be avoided by using private communicators.

• Efficiency: when not all processes need to participate in a collective operation, it is
more efficient to create a communicator including only the relevant processes.

220 / 505



Communicators and libraries

Communicators are more or less essential when developing general-purpose libraries that use
MPI internally to execute algorithms in parallel.

To illustrate this, consider the following code:

#include <mpi.h>

#include <matlib.h>

void example ()

{

MPI_Request req;

MPI_Irecv ( ..., &req );

matlib_invert ( ... ); /* Library call. */

MPI_Wait ( &req, ... );

}
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Communicators and libraries

If the library function matlib invert uses MPI to send messages between processes, then
the MPI Irecv call could interfere with the library.

That is, the MPI Irecv call could be matched by an MPI Send call performed in the
function matlib invert, instead of an MPI Send call performed by the program itself.

This would certainly not lead to a happy end ...
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Tags as communicators

The tag associated with a message can be used to simulate communicators.

That is, by using distinct tags in different program units/libraries, one can avoid
interference between communication operations.

However, this only works for point-to-point communication and for situations in which one
has control over the tags used in all point-to-point operations.

It does not work when using an external library that is developed by an independent third
party.
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Creating a communicator

MPI provides various functions for creating and managing communicators. Two of those are
considered here:

MPI Comm dup – Duplicates a given communicator. The new communicator contains
the same processes as the original.

MPI Comm split – Creates multiple communicators containing different sub-sets of
processes in the original communicator.

Both functions use an existing communicator to create new communicators. The existing
communicator can be MPI COMM WORLD or a communicator created with one of these
functions.
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Duplicating a communicator

int MPI_Comm_dup ( MPI_Comm src, MPI_Comm* copy ); [nonlocal]

src IN The communicator to be duplicated.

copy OUT A pointer to a communicator handle that will be set to the duplicated commu-
nicator.

The function MPI Comm dup creates a copy of an existing communicator.

All processes within the existing communicator must call this function. They all get a
handle to the new communicator.

This function is typically used to create a private communicator within a program unit or
library.
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Duplicating a communicator

The processes have the same rank in the original and the new communicator.

MPI_Comm comm;

int rank1, rank2;

MPI_Comm_dup ( MPI_COMM_WORLD, &comm );

MPI_Comm_rank ( MPI_COMM_WORLD, &rank1 );

MPI_Comm_rank ( comm, &rank2 );

printf ( "My rank in MPI_COMM_WORLD is %d.\n", rank1 );

printf ( "My rank in comm is %d.\n", rank2 );

The above code will print the same rank twice for each process.
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Splitting a communicator

int MPI_Comm_split ( MPI_Comm src, int color, int key,

MPI_Comm* copy ); [nonlocal]

src IN The communicator to be split.

color IN A non-negative integer indicating how to split the original communicator.

key IN An integer that indicates how the processes are to be numbered within each
sub-group.

copy OUT A pointer to a communicator handle that will be set to the new communicator
for this process.

The function MPI Comm split partitions the processes within the source communicator into
disjoint sub-groups.

Each sub-group gets its own communicator that is returned in the comm parameter.
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Splitting a communicator

The parameter color controls how the processes in the source communicator are to be split
into sub-groups.

That is, all processes specifying the same value for the color parameter end up in the same
sub-group.

The key parameter controls how the processes are numbered in their sub-groups.

That is, the processes are ranked in the order defined by the key parameter, with ties
broken by their rank in the source communicator.

The next slide shows how to divide the processes in MPI COMM WORLD into two sub-groups.
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Splitting a communicator example
MPI_Comm comm;

int proc_count;

int rank1, rank2;

int color, key;

MPI_Comm_size ( MPI_COMM_WORLD, &proc_count );

MPI_Comm_rank ( MPI_COMM_WORLD, &rank1 );

if ( rank1 < (proc_count / 2) )

color = 0;

else

color = 1;

key = rank1;

MPI_Comm_split ( MPI_COMM_WORLD, color, key, &comm );

MPI_Comm_rank ( comm, &rank2 );

printf ( "rank1 = %d, rank2 = %d\n", rank1, rank2 );
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Splitting a communicator example

When the program is run with 4 processes, the output will be:

rank1 = 0, rank2 = 0

rank1 = 1, rank2 = 1

rank1 = 2, rank2 = 0

rank1 = 3, rank2 = 1

This is illustrated in a graphical way on the next slide.
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Splitting a communicator example
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Splitting a communicator example

The next slide shows an alternative implementation of the previous example.

In this case the odd-numbered processes are put in one sub-group, and the even-numbered
processes are put in the other group.

As in the previous example, the ranks of the processes in MPI COMM WORLD are used to order
the processes in the new communicators.
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Splitting a communicator example
MPI_Comm comm;

int proc_count;

int rank1, rank2;

int color, key;

MPI_Comm_size ( MPI_COMM_WORLD, &proc_count );

MPI_Comm_rank ( MPI_COMM_WORLD, &rank1 );

if ( (rank1 % 2) == 0 )

color = 0;

else

color = 1;

key = rank1;

MPI_Comm_split ( MPI_COMM_WORLD, color, key, &comm );

MPI_Comm_rank ( comm, &rank2 );

printf ( "rank1 = %d, rank2 = %d\n", rank1, rank2 );
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Splitting a communicator example

When the program is run with 4 processes, the output will be:

rank1 = 0, rank2 = 0

rank1 = 1, rank2 = 0

rank1 = 2, rank2 = 1

rank1 = 3, rank2 = 1

This is illustrated in a graphical way on the next slide.

234 / 505



Splitting a communicator example
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Deleting a communicator

int MPI_Comm_free ( MPI_Comm* comm ); [nonlocal]

comm INOUT The communicator to be deleted.

The function MPI Comm free deletes a communicator that has been obtained with
MPI Comm dup or MPI Comm split.

A call to one of these two functions should always be matched by a call to MPI Comm free

in order to avoid resource leaks.

236 / 505



Deleting a communicator

The function MPI Comm free does not immediately delete the specified communicator; any
ongoing (communication) operations involving the communicator will be completed before
the communicator is deleted.

The following code is therefore valid:

MPI_Comm comm;

MPI_Request req;

MPI_Comm_dup ( MPI_COMM_WORLD, &comm );

MPI_Irecv ( ..., comm, &req );

MPI_Comm_free ( &comm );

MPI_Wait ( &req, MPI_STATUS_IGNORE );
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Exercise: competing groups of processes

Implement a game in which two groups of processes compete with each other by drawing
random numbers.

The game proceeds in N rounds in which the two groups of processes generate a random
number. The group with the largest number wins that round.

To generate a number per group, all processes in that group generate a random number
independently. The largest number across all processes in the group is compared with the
random number generated in a similar way by the other group.

The process with rank zero (within MPI COMM WORLD) should keep track of the number of
wins for each group.
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Exercise: hints

Use [MPI] Exercise 7 : Game as the starting point for your program.

Use the provided function next random to generate the stream of random numbers.

Test the program with 2, 3, 4, 5, 6, 7 and 8 processes. Do the results match your
expectations?

Note that this exercise is not so much about performance but about correctness.
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Part III

OpenMP
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What is OpenMP?

Open Multi-Processing

OpenMP is an application programming interface (API) for multi-platform shared memory
multiprocessing .

It consists of a set of compiler directives, library routines, and environment variables that
influence run-time behaviour.

OpenMP is managed by a group of major computer hardware and software vendors who
define the OpenMP specifications. Compiler vendors are free to (partly) implement them in
their products.

See http://www.openmp.org.
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OpenMP specifications and implementations
OpenMP specifications

Compiler 5.1 5.0 4.5 4.0 3.1 3.0 2.5 2.0 1.0

GCC C/C++ — (10) 6.1 4.9.1 4.7.0 4.4.0 4.2.0 ? ?
Clang — 11 (3.8) (3.8) 3.8 — —
Intel C/C++ (2021.1) (2021.1) 17 16 12

There is no standard way to detect the OpenMP standard supported by the compiler. You
can pass -DOPENMPx flags and switch between different implementations inside the code via

#ifdef OPENMP45

/* Special implementation using OpenMP 4.5 features */

#else

/* Generic implementation not using OpenMP 4.5 features */

#endif

Some newer OpenMP features make it possible to express an algorithm in a more elegant
and/or more efficient way.
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Why use OpenMP?

It is very easy to parallelise existing code incrementally.

It allows you to keep serial and parallel code side by side.

It enables both coarse- and fine-grained parallelisation.

It is implemented in most C, C++ and Fortran compilers.

It is platform independent; OpenMP runtime environment ensures that programs run on
different parallel computers without modifications

It can be used on CPUs and GPUs/accelerators.

It can be used as the ’X’ in hybrid MPI-X parallelisation.
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What is included in OpenMP?

Directives for parallelisation within a single address space

Loop-parallelisation (Loop nesting since OpenMP 3.0)

Asynchronous task parallelisation (since OpenMP 3.0)

Places and thread affinity control (since OpenMP 4.0)

Vectorisation by SIMD-directives (since OpenMP 4.0)

Error handling (since OpenMP 4.0)

Offloading support for GPUs (since OpenMP 4.0)

Taskloop construct and doacross parallelism (since OpenMP 4.5)
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What is not included in OpenMP?

Explicit communication between processes via messages

Fork-join model restricted to a single address space

Control on implementation of the runtime system; no direct control on thread
creation/destruction (implementation-dependent thread-pool)

Support for proper parallel I/O

Debugging facilities
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Semantics

Fork-join model

OpenMP programs follow the fork-join model starting with the sequential execution of
instructions by the master thread

FORK: When a parallel region construct is encountered, the master thread spawns a team
of threads to execute the program statements enclosed in the parallel region in parallel
among the team threads

JOIN: Once the statements inside the parallel region are completed, all team threads
synchronize and terminate leaving only the master thread

At each fork, a different number of worker threads can be spawned

Threads exist within a single process and cease to exist outside
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Semantics
Fork-join model

Sequential program executed by the master thread

OpenMP program executed partly in parallel
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Semantics

Threads

Within an OpenMP program threads are identified by an integer number ranging from 0 to
the number of threads minus one.

The master thread has thread number 0.

The thread number is returned by the run-time function

int tid=omp_get_thread_num();

Vendors of OpenMP compilers implement their own mechanism to create/destroy threads
physically. One can therefore not assume that the same physical threads are active in two
consecutive parallel regions
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Semantics

Threads

OpenMP provides mechanisms to specify the number of threads to be allocated when
forking from the master thread into a parallel region

• environment variable

set OMP_NUM_THREADS=8; progname

• run-time function (overwrites environment variable)

omp_set_num_threads(8);

The number of threads typically matches the number of processors/ cores. The actual
number depends on the type of application
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Semantics
Threads

Threads can execute the same instructions (work sharing)

Thread 0

for (i=0; i<n/2; i++)

a[i] = a[i]+1;

Thread 1

for (i=n/2+1; i<n; i++)

a[i] = a[i]+1;

Threads can execute different instructions (task parallelism)

Thread 0

for (i=0; i<n; i++)

a[i] = a[i]+1;

Thread 1

for (i=0; i<n; i++)

b[i] = b[i]-1;
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C/C++ language bindings

All OpenMP run-time functions have the omp_ prefix

OpenMP functions are defined in the file omp.h, which must be included in any program
that makes OpenMP calls

OpenMP parallelism is specified through the use of compiler directives

#pragma omp parallel

The compiler must be explicitly instructed to interpret these directives

gcc -fopenmp progname.c -o progname

The preprocessor macro _OPENMP is defined when the compiler/ preprocessor is invoked with
OpenMP-support enabled
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The basics of an OpenMP program

#include<stdio.h>

#ifdef _OPENMP

#include<omp.h>

#endif

int main() {

/* Serial code executed by master thread */

#pragma omp parallel

{

/* Parallel region executed by all threads */

/* Other OpenMP directives/run-time library calls */

} /* All threads synchronize and join master thread */

/* Serial code executed by master thread */

}
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Exercise: hello world

Implement a small OpenMP program that prints the total number of threads and the rank
of the current thread.

A skeleton implementation of the program is given in task [OpenMP] Exercise 1 : Hello
World .

Make sure that the program works in serial and parallel mode
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Exercise: hints

Note that in serial mode the header file omp.h is not included so that
omp get thread num() and omp get num threads() are not available.

Variables can be defined to be

• shared between all threads

#pragma omp parallel shared(variable)

• private to each thread

#pragma omp parallel private(variable)
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Solution 1: hello world
int main() {

#ifdef _OPENMP

int nthreads, tid;

/* Start a parallel region with thread-private data */

#pragma omp parallel private(nthreads, tid)

{ tid = omp_get_thread_num();

printf("Thread number = %d\n", tid);

if (tid == 0) { /* Master thread only */

nthreads = omp_get_num_threads();

printf("Number of threads = %d\n", nthreads);

}

}

#else

printf("OpenMP disabled.\n");

#endif

}
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Solution 2: hello world

Create preprocessor macros for the OpenMP runtime functions

#include<stdio.h>

#ifdef _OPENMP

#include<omp.h>

#else

#define omp_get_num_threads() 1

#define omp_get_max_threads() 1

#define omp_get_thread_num() 0

#endif

All #pragma statements are interpreted as comments if the code is compiled without
OpenMP and therefore they are ignored.
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Solution 2: hello world

int main() {

int nthreads, tid;

/* Start a parallel region with thread-private data */

#pragma omp parallel private(nthreads, tid)

{ tid = omp_get_thread_num();

printf("Thread number = %d\n", tid);

/* Perform next tasks on master thread only */

if (tid == 0) {

nthreads = omp_get_num_threads();

printf("Number of threads = %d\n", nthreads);

}

}

}
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Parallel regions: private vs. shared variables

Parallel regions are processed by all threads in the team. Threads can have private copies of
variables or access to a single global variable:

/* Define and initialize variables */

int global=0, local=0;

/* Create parallel region with 4 threads */

omp_set_num_threads(4);

#pragma omp parallel region shared(global) private(local)

{

/* Each thread has its own private copy of variable ’local’ */

printf("Local: %d\n", local++);

/* All threads have read/write access to variable ’global’ */

printf("Global: %d\n", global++);

}
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Parallel regions: default behaviour of variables

Compiler vendors are free to choose the default behaviour of variables if you do neither
specify shared nor private treatment.

The default behaviour of variables can be specified further

• Treat all variables that are not specified explicitly as globally shared

#pragma omp parallel default(shared)

• Force the user to specify the treatment for all variables explicitly

#pragma omp parallel default(none)

Some compilers also support #pragma omp parallel default(private) but this is not specified
in the OpenMP specification for C language.
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Parallel regions: (first)private

Thread private copies of variables are not initialized by the value that the variable has
before the parallel region

int local=7;

#pragma omp parallel private(local)

printf("My thread number + offset: %d\n", local+omp_get_thread_num());

/* This will print 0, 1, ... */

Thread private copies of variables are initialized by the value that the variable has before
the parallel region by the firstprivate clause

int local=7;

#pragma omp parallel firstprivate(local)

printf("My thread number + offset: %d\n", local+omp_get_thread_num());

/* This will print 7, 8, ... */
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Example: parallel computation of π

The area of a circle of radius R is πR2, the area of
a square with side length 2R is 4R2. If the circle is
inscribed inside the square then the ratio of both areas
is π/4.
Monte Carlo method: if we pick N points at random
inside the square and count the number of points that
are inside the circle (M) then we can compute the ap-
proximation π ≈ 4M/N.

Open [OpenMP] Exercise 2 : Compute PI and rewrite the sequential algorithm as a parallel
algorithm using parallel regions.
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Example: hints

You can retrieve an upper bound of the numbers of threads that will be created in a parallel
regions using omp get max threads(). This even works outside any parallel region.

Use an array of size omp get max threads() to pass data from the different threads to the
master thread.

Use #pragma omp parallel default(none) to force yourself to specify the behaviour of all
variables (private/shared) explicitly.
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Parallel for

For-loops can be very easily transformed into parallel for-loops

int a[n];

#pragma omp parallel shared(a) /* Parallel region */

#pragma omp for /* For-loop */

for (int i=0; i<n; i++)

{

a[i]=i;

}

The OpenMP runtime system takes care that each thread works on a separate part of the
globally accessible shared array a[0:n-1].

Do not change the upper bound of the loop counter to n/nprocs.
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Parallel for

The pragmas for parallel regions and for-loops can be combined

int a[n];

/* Parallel for-loop */

#pragma omp parallel for shared(a)

for (int i=0; i<n; i++)

{

a[i]=i;

}

Note that in the above code a team of threads is spawned only to process the for-loop in
parallel and all threads except for the master thread are killed afterwards.
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Parallel for

Keep in mind that at the end of a parallel region all threads in the team except for the
master thread are killed. Spawning threads over and over again for each new parallel region
can become costly.

/* Spawn team of threads and */

/* perform parallel for-loop /*/

#pragma omp parallel for shared(a)

for (int i=0; i<n; i++)

{

a[i]=i;

} /* Kill team of threads */

/* Spawn team of threads and */

/* perform parallel for-loop */

#pragma omp parallel for shared(b)

for (int i=0; i<n; i++)

{

b[i]=i;

} /* Kill team of threads */
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Parallel for

It can make sense to keep separate pragmas for parallel regions and for-loops to prevent
repeated spawning and killing of threads.

/* Spawn team of threads */

#pragma omp parallel shared(a,b)

{

/* Parallel for-loop */

#pragma omp for

for (int i=0; i<n; i++)

{

a[i]=i;

}

/* Parallel for-loop */

#pragma omp for

for (int i=0; i<n; i++)

{

b[i]=i;

}

} /* Kill team of threads */
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Parallel for: ordered

If it is essential that the parallel for-loop is to be executed like a sequential loop you can use
the ordered directive:

int a[n];

a[0]=1;

a[1]=1;

/* Compute Fibonacci sequence */

#pragma omp parallel for shared(a) ordered

for (int i=2; i<n; i++)

{

a[i] = a[i-1] + a[i-2];

}

However, the ordered directive might cause truly sequential execution. It is therefore not
advisable to use it; try to change your algorithm first.
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Parallel for: schedule

The OpenMP runtime system knows different strategies to divide the workload and
distribute the work between threads.

A strategy can be chosen using the schedule(<strategy>) directive.

int a[n];

#pragma omp parallel for shared(a) schedule(<strategy>)

for (int i=0; i<n; i++)

a[i]=i;

If no strategy is chosen by you then the OpenMP compiler and/or runtime system is free to
choose one. This behaviour can be made explicit by specifying schedule(auto).
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Parallel for: schedule(static)

schedule(static, [chunk size]) divides the iteration into chunks of size chunk size

and assigns them to the threads in the team in a round-robin fashion

int a[100];

omp_set_thread_num(4);

#pragma omp parallel for shared(a) schedule(static, 30)

for (int i=0; i<100; i++)

a[i]=i;

Thread 0 processes entries 0-29, thread 1 processes entries 30-59, thread 2 processes entries
60-89, and thread 3 processes entries 90-99.
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Parallel for: schedule(static)

One can specify a chunk size so that there are more subtasks than threads in the team

int a[100];

omp_set_thread_num(4);

#pragma omp parallel for shared(a) schedule(static,20)

for (int i=0; i<100; i++)

a[i]=i;

All threads will first work on a chunk of size 20. Once the first thread has finished execution
it will process the last chunk of size 20, while all other threads are waiting (implicit barrier!).
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Parallel for: schedule(static)

When no chunk size is specified, the iteration is divided into chunks that are
approximately equal in size, and at most one chunk is distributed to each thread.

int a[100];

omp_set_thread_num(4);

#pragma omp parallel for shared(a) schedule(static)

for (int i=0; i<100; i++)

a[i]=i;

All threads are working on a chunk of size 25.
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Parallel for: schedule(static)

When no chunk size is specified, the iteration is divided into chunks that are
approximately equal in size, and at most one chunk is distributed to each thread.

int a[100];

omp_set_thread_num(3);

#pragma omp parallel for shared(a) schedule(static)

for (int i=0; i<100; i++)

a[i]=i;

The OpenMP compiler can decide to have thread 0 and thread 1 working on chunks of size
33, and thread 2 working on a chunk of size 34.
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Parallel for: schedule(dynamic)

schedule(dynamic,[chunk size]) divides the iteration into chunks of size chunk size

and distributes them to threads dynamically. Once a thread has finished its chunk it
requests another chunk until all chunks have been processed.

int a[100];

omp_set_thread_num(4);

#pragma omp parallel for shared(a) schedule(dynamic,10)

for (int i=0; i<100; i++)

a[i]=i;

Each chunk contains chunk size iterations, except for the chunk that contains the
sequentially last iteration, which may have fewer iterations.

When no chunk size is specified, it defaults to 1.

274 / 505



Parallel for: schedule(dynamic)

Dynamic scheduling is useful if the size of a chunk hardly correlates with the time needed to
process it.

int a[100];

omp_set_thread_num(4);

#pragma omp parallel for shared(a) schedule(dynamic,1)

for (int i=0; i<100; i++)

do_costly_procedure_with_varying_computing_time(a[i], i);

For instance, the procedure might perform different operations on a[i] that require
between milliseconds and minutes to finish depending on the value of i.
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Parallel for: schedule(guided)

When schedule(guided,[chunk size]) is used threads request chunks dynamically until
all chunks are processed.

For a chunk size of 1, the size of each chunk is proportional to the number of unassigned
iterations divided by the number of threads in the team, decreasing to 1.

or a chunk size of k , the size of each chunk is determined in the same way but no chunk
contains fewer than k iterations (except for the sequentially last one).
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Parallel for: schedule(guided)

int a[1234];

omp_set_thread_num(5);

#pragma omp parallel for shared(a) schedule(guided,1)

for (int i=0; i<1234; i++)

a[i]=i;

First, all five threads are processing chunks of size b1234/5c = 246. The remaining
1234− 5× 246 = 4 iterations are split into chunks of size 1 and processed by thread 0 to
thread 3.

schedule(guided,4) prevents the splitting of the remainder into chunks of size 1 so that
the last 4 iterations are processed by thread 0.
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Parallel for: implicit barrier

By default, the OpenMP runtime system forces all threads to wait at the end of a for-loop
until all threads have finished execution.

This behaviour is called an implicit barrier . Obviously, some threads are idle while others
are still executing; the slowest thread determines the overall computing time.

Many OpenMP constructs (like section, workshare, etc.) have an implicit barrier to
ensure that execution only continues once the previous task has been completed by all
threads in the team.

At the end of each parallel section all threads wait until they get killed.
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Parallel for: nowait

If multiple independent for-loops are executed one after the other in the same parallel
region one can instruct the OpenMP runtime system to not wait but continue immediately
by using the nowait directive

int a[n], b[n];

#pragma omp parallel shared(a,b)

{

#pragma omp for nowait /* All threads start at the same time */

for (int i=0; i<n; i++)

{

a[i]=i;

} /* Once a thread has finished the above loop */

#pragma omp for /* it executes the second loop without waiting */

for (int i=0; i<n; i++)

{

b[i]=i;

} /* implicit barrier */

}
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Parallel for: nowait
However, nowait is dangerous if the second loop depends on data that is produced in the
first loop. In this case one has to guarantee that data from the first loop is available before
it is used in the second loop.

int a[n], b[n];

#pragma omp parallel shared(a,b)

{

#pragma omp for

for (int i=0; i<n; i++)

{

a[i]=i;

} /* implicit barrier */

#pragma omp for

for (int i=0; i<n; i++)

{

b[i]=a[i]; /* okay since first loop has implicit barrier */

}

}

280 / 505



Parallel for: nowait
However, nowait is dangerous if the second loop depends on data that is produced in the
first loop. In this case one has to guarantee that data from the first loop is available before
it is used in the second loop.

int a[n], b[n];

#pragma omp parallel shared(a,b)

{

#pragma omp for nowait

for (int i=0; i<n; i++)

{

a[i]=i;

} /* NO implicit barrier */

#pragma omp for

for (int i=0; i<n; i++)

{

b[i]=a[i]; /* this can go wrong if a[i] has not been processed */

} /* implicit barrier */

}
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Parallel for: nowait

schedule(static) ensures that each thread processes exactly the same set of chunks in
multiple consecutive parallel for-loops.

int a[n], b[n];

#pragma omp parallel shared(a,b)

{

#pragma omp for nowait schedule(static)

for (int i=0; i<n; i++)

{

a[i]=i;

} /* NO implicit barrier */

#pragma omp for schedule(static)

for (int i=0; i<n; i++)

{

b[i]=a[i]; /* okay since the thread that processes this chunk has */

/* also processed the corresponding chunk in first loop */

}

}
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Exercise: Parallel axpy

Write a parallel program that computes

y := αx + y

for two vectors x, y ∈ RN and a scalar coefficient α ∈ R.

Test your program for different scheduling strategies and chunk sizes, and different values
for N.

You can start from the sequential implementation in [OpenMP] Exercise 3: AXPY
Operation.
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Parallel for: collapse

Multiple nested for-loops can be collapsed into one large parallel for-loop by using the
collapse directive.

int a[n][m];

#omp parallel for shared(a) collapse(2)

for (int i=0; i<n; i++)

for (int j=0; j<m; j++)

{

a[i][j] = i+j;

}

The collapsed loops will be treated as a single parallel for-loop from 0 to n*m. This makes it
much easier to divide the overall work into chunks and assign them to threads.
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Parallel for: lastprivate

firstprivate(i) declares i as private variable and initializes its thread-private copy by
the value of i before the parallel region.

lastprivate(i) declares i as private variable and updates its value by the value of the
thread-private copy after the parallel region.

int a=10;

int n=10;

omp_set_num_threads (3);

#pragma omp parallel for firstprivate(a) lastprivate(a) \

schedule(static,3)

for (int i=0; i<n; i++)

a++;

printf("%d\n", a); /* What is the answer? */
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Parallel reduction

The reduction directive combines multiple private copies from all threads in a team into a
single number using various types of reduction operations, such as min, max and +, -, *,

/, &, |, ,̂ &&, ||.

int a[n], b[n];

long int sum;

#pragma omp parallel for shared(a,b)

for (int i=0; i<n; i++)

a[i] = b[i] = i;

#pragma omp parallel for shared(a,b) reduction(+:sum)

for (int i=0; i < n; i++)

sum = sum + (a[i] * b[i]);

printf("Sum = %d\n", sum);
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Exercise: Parallel inner product

Write a parallel program that computes the inner product

x>y =
N∑
i=1

xiyi

for two vectors x, y ∈ RN .

Test your program for different scheduling strategies and chunk sizes, and different values
for N.

You can start from the sequential implementation in [OpenMP] Exercise 4 : Inner Product.
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Exercise: Parallel dyadic product

Write a parallel program that computes the dyadic product

xy> =


x1y1 x1y2 . . . x1yN
x2y1 x2y2 . . . x2yN

...
...

. . .
...

xNy1 xNy2 . . . xNyN


for two vectors x, y ∈ RN .

Test your program for different scheduling strategies and chunk sizes, and different values
for N.

You can start from the sequential implementation in [OpenMP] Exercise 5 : Dyadic
Product.
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Influencing the number of threads

OpenMP allows to explicitly define the number of threads that should be used in a parallel
region by using the directive num threads(n). Note that this has to be done at the
beginning of a parallel region

int n = 1000;

long int sum = 0;

#pragma omp parallel shared(sum) num_threads(4)

#pragma omp for reduction(+:sum)

for (int i=0; i<n; i++)

sum++;

What is the value of sum after the parallel region?
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Conditional parallelization

OpenMP allows to enable/disable parallelization based on conditions.

#pragma omp parallel for reduction(+:sum) if (n>100)

for (int i=0; i<n; i++)

sum++;

In practice, the overhead caused by spawning and killing threads typically only pays off if the
size of the task to be done in parallel is sufficiently large. A common approach is as follows

#define OMP_MIN_SIZE = 1000

#pragma omp parallel for reduction(+:sum) if (n>OMP_MIN_SIZE)

for (int i=0; i<n; i++)

sum++;
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Custom reduction rules

In OpenMP it is very easy to declare reduction rules that realize more complex
reduction expressions and/or perform custom reduction rules for user-defined structures.
The input and output variables are called omp in and omp out, respectively.

int n=1000;

long int sum=0;

#pragma omp declare reduction(mysum : \

int : \

omp_out = omp_out + omp_in)

#pragma omp parallel for reduction(mysum:sum)

for (int i=0; i<n; i++)

sum++;

This yields sum = 1000.
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Custom reduction rules

The initial value of the reduction can be specified explicitly by defining the thread-private
variable omp priv

int n=1000;

long int sum=0;

#pragma omp declare reduction(mysum : \

int : \

omp_out = omp_out + omp_in) \

initializer (omp_priv = 42)

#pragma omp parallel for reduction(mysum:sum)

for (int i=0; i<n; i++)

sum++;

This yields sum = 1000 + OMP NUM THREADS ∗ 42.
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Custom reduction rules

Attributes/functions of the user-defined structure can be used in the custom reduction rule.
Note that multiple assignments in the custom reduction rule need to be separated by ’,’ and
not ’;’

int n=1000;

struct point { int a; int b; } sum;

#pragma omp declare reduction(mysum : struct point : \

omp_out.a = omp_out.a + omp_in.a, \

omp_out.b = omp_out.b + omp_in.b)

#pragma omp parallel for reduction(mysum:sum)

for (int i=0; i<n; i++) {

sum.a++;

sum.b++;

}

This yields sum.a = 1000 and sum.b = 1000.
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Custom reduction rules

Custom reduction rules are very powerful especially in combination with C++
meta-programming techniques.

It is, for instance, possible to declare custom reduction rules together with the
implementation of a structure/class

template <typename T>

struct point {

T a,b;

point() { a=0; b=0; }

};

#pragma omp declare reduction(pointsum : point : \

omp_out.a = omp_out.a + omp_in.a, \

omp_out.b = omp_out.b + omp_in.b)

initializer (omp_priv = point())

and use the struct/class as if it was an intrinsic data type.
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Barriers

OpenMP adds implicit barriers at the end of each parallel region, parallel for, etc. Threads
can be explicitly instructed to not wait and proceed with the next parallel for.

It is also possible to explicitly instruct threads to wait at a particular location of the code by
using an explicit barrier

#pragma parallel shared(a,b,c)

{

/* Initialize a */

/* Initialize b */

#pragma omp barrier /* All threads in the team will wait here */

/* Compute c = a+b */

}
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Atomic operations

Due to the shared-memory nature of OpenMP, all threads in the team have the possibility
to read/write from/to the same memory location.

This concurrent memory access can cause the following problems:

• If two threads try to update the same memory location (a++) at the same time one
update (+1) gets lost

int n=1000;

int a=0;

#pragma omp parallel for shared(a)

for (int i=0; i<n; i++)

if (i%10 == 0)

a++;
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Atomic operations

Due to the shared-memory nature of OpenMP, all threads in the team have the possibility
to read/write from/to the same memory location.

This concurrent memory access can cause the following problems:

• If thread 0 tries to read from a memory location which is updated by thread 1 at
the same time then thread 0 reads corrupted data.

int n=1000;

struct point { int a; int b; } p;

#pragma omp parallel for shared(p)

for (int i=0; i<n; i++)

if (i%10 == 0) {

int t = p.a;

p.a = p.b;

p.b = t;

}
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Atomic operations

The atomic construct ensures that a specific memory location is accessed atomically , that
is, by exactly one thread at a time

int n=1000;

int a=0;

#pragma omp parallel for shared(a)

for (int i=0; i<n; i++)

{

#pragma omp atomic

if (i%10 == 0) a++;

}

Be careful with using atomic since it will add extra code that locks access to the specified
memory location and removes the lock afterwards. Therefore, carefully analyse your
algorithm and only use atomic if it is really needed.
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Atomic operations
OpenMP allows fine-grained control over atomic memory access

• read: allows that multiple threads read from the same memory location at the same
time but that no other thread modifies it

#pragma omp atomic read

v = a[i];

• write: prevents multiple threads from writing to the same memory location at the
same time without reading from it before

#pragma omp atomic write

a[i] = v;

• update: prevents multiple threads from updating the same memory location at the
same time

#pragma omp atomic update

a[i]++; /* a[i] = a[i]+1 */
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Atomic operations

As the name says, atomic only ensures atomic memory access to an individual memory
location. It therefore cannot handle situation in which a sequence of operations has to be
applied without interference by other threads to ensure data consistency

int n=1000;

struct point { int a; int b; } p;

#pragma omp parallel for shared(p)

for (int i=0; i<n; i++)

if (i%10 == 0)

{

#pragma omp atomic

int t = p.a;

#pragma omp atomic /* p.a can be overwritten by another thread */

p.a = p.b;

#pragma omp atomic

p.b = t;

}
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Critical sections

A code block that, as a whole, must be executed by only one thread at a time has to be
marked as a critical section

int n=1000;

struct point { int a; int b; } p;

#pragma omp parallel for shared(p)

for (int i=0; i<n; i++)

if (i%10 == 0)

{

#pragma omp critical

{

int t = p.a;

p.a = p.b;

p.b = t;

}

}
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Atomic vs. critical sections

Concerning computational overhead, atomic is more lightweight than critical section.

• atomic restricts accesses to the same memory location but it allows multiple threads
to perform the same operation on different memory locations

• critical section allows only one thread at a time to perform the instructions of an
entire code block even if they would apply the operations to different memory locations
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Named critical sections
OpenMP allows to distinguish between multiple critical sections that can be performed
simultaneously by giving them different names

int n=1000;

struct point { int a; int b; } p10;

struct point { int a; int b; } p20;

#pragma omp parallel for shared(p10,p20)

for (int i=0; i<n; i++)

if (i%10 == 0)

{

#pragma omp critical point10

{ int t = p10.a; p10.a = p10.b; p10.b = t; }

}

if (i%20 == 0)

{

#pragma omp critical point20

{ int t = p20.a; p20.a = p20.b; p20.b = t; }

}
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Exercise: Conditional counting

Write a program that generates a sequence of random numbers between 0 and N and
counts how many times the integer part of that number equals 0, 1, . . . ,N. This process is
known as generating a histogram.

Implement two version, one with atomic the other with critical section, and compare
the performance of both implementations for different N and a large number of sampling
points.

You can start from [OpenMP] Exercise 6 : Histogram.
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Differentiation between threads

It is possible to distinguish between different threads making use of the runtime function
omp get thread num(). For instance, one could define three different tasks

if (omp_get_thread_num() == 0)

{

/* Task for the master thread */

}

else if (omp_get_thread_num() == 1)

{

/* Task for thread no. 1 */

}

else if (omp_get_thread_num() == 2)

{

/* Task for thread no. 2 */

}

However, this contradicts the OpenMP paradigm that the same code should work in
sequential and parallel mode.
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Parallel sections

Sections are a better way to assign different tasks to different threads

#pragma omp sections

{

#pragma omp section

/* Task for a single threads */

#pragma omp section

/* Task for another single threads */

#pragma omp section

/* Task for yet another single threads */

}

Each block of code is executed once by one of the threads in the team. However, it is not
clear that the master thread will execute the first block, etc.
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Parallel sections

The #pragma omp sections construct accepts private, firstprivate, lastprivate,
reduction, and nowait

int a=1;

int sum;

#pragma omp sections firstprivate(a) reduction(+:sum) nowait

{

#pragma omp section

sum = ++a;

#pragma omp section

sum = 2*a;

}
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Master/single section

The single construct ensures that a code block is executed by a single thread, which is not
necessarily the master thread

#pragma omp single

{

printf("Total number of threads is %d\n", omp_get_num_threads());

}

The master construct ensures that this is the master thread

#pragma omp master

{

printf("Total number of threads is %d\n", omp_get_num_threads());

}

single and master accept private, firstprivate, and nowait.
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Exercise: Circular array shift

Implement a parallel, circular array shift.

Here is the serial implementation of the algorithm:

const int N = 100;

double a[N];

double t;

int i;

t = a[N - 1];

for ( i = N - 1; i >= 1; i-- )

a[i] = a[i - 1];

a[0] = t;

You can start from [OpenMP] Exercise 7 : Circular Array Shift.
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Calling functions within parallel regions

OpenMP allows to call functions from parallel regions

void hello() { printf("Hello from thread %d\n", omp_get_thread_num()); }

int main() {

#pragma omp parallel num_threads(4)

hello();

}

This will result in
Hello from thread 0

Hello from thread 1

Hello from thread 2

Hello from thread 3

310 / 505



Calling functions within parallel regions

OpenMP allows to call parallelized functions from parallel regions

void hello() {

#pragma omp parallel num_threads(4)

printf("Hello from thread %d\n", omp_get_thread_num());

}

int main() {

#pragma omp parallel num_threads(4)

hello();

}

This will, however, result (at least with the lecturer’s compiler) in
Hello from thread 0

Hello from thread 0

Hello from thread 0

Hello from thread 0
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Calling functions within parallel regions

By default, OpenMP does not enable nested parallelization so that the parallel region in the
main function is executed by four different threads but each call to the hello function only
uses the master thread.

Since OpenMP 2.5 nested parallelization can be enabled

• via environment variable OMP NESTED=TRUE

• via runtime function omp set nested(1)

312 / 505



Calling functions within parallel regions

void hello() {

#pragma omp parallel num_threads(2)

printf("Hello from thread %d\n", omp_get_thread_num());

}

int main() {

omp_set_nested(1);

#pragma omp parallel num_threads(4)

hello();

}

What will be the output?

What will be the output if you swap the numbers 2 and 4.
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Calling functions within parallel regions

If you want to write a function that can be called from a parallel region make sure that the
function is thread-safe. That is, the function can be safely called multiple times in parallel.
Typical examples for not thread-safe functions are those which store data internally

int increase_by_counter(int i)

{

static int counter=0;

counter++;

return i+counter;

}

You can simply render the above function thread-safe by using atomic
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Nested parallelization

Use nested parallelization to improve the efficiency of nested for-loops. The simplest
approach is to collapse multiple for-loops. This even works with nested parallelization
turned off.

int N=1000;

double A[N][N], x[N], y[N];

#pragma omp parallel for collapse(2)

for (int i=0; i<N; i++)

{

for (int j=0; j<N; j++)

{

y[i] += A[i][j]*x[j]

}

}
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Nested parallel regions

It is also possible to explicitly create two nested parallel for-loops.

int N=1000;

double A[N][N], x[N], y[N];

omp_set_nested(1);

#pragma omp parallel for num_threads(2)

for (int i=0; i<N; i++)

{

double sum = 0.0;

#pragma omp parallel for num_threads(2) reduction(+:sum)

for (int j=0; j<N; j++)

{

sum += A[i][j]*x[j]

}

y[i] = sum;

}
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Nested parallel regions

Be careful with hand-written nested parallelization and test your implementation extensively.
The overhead of nested parallelization (spawn/kill threads) can significantly increase the
computing time.

IMHO, nested parallel for-loops have poor performance in most cases unless the outer
for-loop has only very few iterations and the inner one has many. However, even in this case
the collapse clause should be more efficient than hand-written nested parallel regions.

If a simple collapse clause is not applicable or does not perform well then fine-grained
parallelization using explicit creation of tasks a better way towards nested parallelization.
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SIMD

Modern CPUs consist of multiple compute cores (parallelization) and each core is able to
perform SIMD operations (vectorization).

Since OpenMP 4.0 the simd construct exists to explicitly tell the compiler to vectorize
for-loops (if the compiler does not auto-vectorize)

int N=1000;

double x[N], y[N], a=2.0;

#pragma omp simd

for (int i=0; i<N; i++)

y[i] = a*x[i] + y[i];

Example for vector length 4

y[0:3] = a*x[0:3] + y[0:3];

y[4:7] = a*x[4:7] + y[4:7];

y[8:11] = a*x[8:11] + y[8:11];

...

The above vectorized for-loop will be executed by a single thread using SIMD operations
even if the computer has multiple cores.

Note that the simd construct does not accept shared(variable).

318 / 505



Parallel for SIMD

The combination of parallel and simd tells the compiler to parallelize the execution of
the loop and to use vectorization within each thread.

int N=1000;

double x[N], y[N], a=2.0;

#pragma omp parallel for simd

for (int i=0; i<N; i++)

y[i] = a*x[i] + y[i];

tid0: y[0:3] = a*x[0:3] + y[0:3];

y[4:7] = a*x[4:7] + y[4:7];

y[8:11] = a*x[8:11] + y[8:11];

...

tid1: y[N/2:N/2+4] = a*x[N/2:N/2+4]

+ y[N/2:N/2+4];

...

In this case it is typically better to leave the decision on the scheduling strategy to the
compiler unless you really know what you are doing.
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Parallel for & SIMD

Another typical programming pattern that combines parallel for and simd is to
parallelize the outer loop and to vectorize the inner one1

int N=1000;

double x[N][N], y[N][N];

#pragma omp parallel for

for (int i=0; i<N; i++)

{

#pragma omp simd safelen(18)

for (int j=18; j<N-18; j++) {

x[i][j] = x[i][j-18] + sinf(y[i][j]);

y[i][j] = y[i][j+18] + cosf(x[i][j]);

}

}

1Example from: ”Explicit Vector Programming with OpenMP 4.0 SIMD Extensions” X. Tian, B.R. de
Supinski, Primeur Magazine 2014-11-10.

320 / 505



SIMD safelen

Without the simd construct the compiler would not be able to perform auto-vectorization
of the inner loop because:

• the loop construct cannot easily be extended to the j-loop, since it would violate the
construct’s semantics

• the j-loop contains a lexically backward loop-carried dependency that prohibits
vectorization

However, the code can be vectorized for any given vector length for array y and for vectors
shorter than 18 elements for array x.

This extra information is necessary for vectorization and has to be provided by the user
using the safelen clause.
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SIMD safelen

In the following example, there is a loop-carried lexically backward dependency. Chunks of
size 4 or less can be vectorized but the sequence of chunks has to be processed sequentially.

#pragma omp simd safelen(4)

for (k=5; k<N; k++)

{

a[k] = a[k-4] + b[k];

}

a[5] = a[1] + b[5];

a[6] = a[2] + b[6];

a[7] = a[3] + b[7];

a[8] = a[4] + b[8];

a[9] = a[5] + b[9];

a[10] = a[6] + b[10];

a[11] = a[7] + b[11];

a[12] = a[8] + b[12];

Note that even if the hardware SIMD length is larger than 4 the algorithm only allows to
process chunks of size 4 in vectorized way.
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Declare SIMD

Traditionally functions in C/C++ accept scalar arguments and return scalar values, which is
a bottleneck in vectorizing a loop that involves such functions. Since OpenMP 4.0 it is
possible to instruct the compiler to generate specific vector variants of the scalar function.

#pragma omp declare simd

int inc(int x)

{

return x+1;

}

A vector variant of this function is then called from a vectorized loop

#pragma omp simd

for (int i=0; i<N; i++)

y[i] = inc(x[i]);
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Declare SIMD

The simdlen clause tells the compiler to SIMDize a function for a predefined vector length.
If this clause is missing then the compiler automatically determines the optimal SIMD
length from the hardware.

#pragma omp declare simd simdlen(4)

int inc(int x)

{

return x+1;

}

The specified vector length should be a multiple of the hardware SIMD length. Otherwise
the potential of the hardware is not fully exploited.

Recent version of the gcc compiler provide detailed information about vectorization if the
-fopt-info-vec option is used.
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Declare SIMD

Another implementation of the inc function is as follows

#pragma omp declare simd uniform(x) linear(k:1)

int inc(int *x, int k)

{

return x[k]+1;

}

The uniform(x) clause defines that x is an invariant value for the complete chunk. Here,
it gives the base address of the array x.

The linear(k:1) clause defines that index k increases linearly by the stride value 1 within
the chunk.
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Declare SIMD

Another implementation of the inc function is as follows

#pragma omp declare simd uniform(x) linear(k:1)

int inc(int *x, int k)

{

return x[k]+1;

}

Performance considerations:

The uniform clause directs the compiler to generate code that passes the parameter’s value
(or address if it is a pointer) via a scalar register instead of a vector register.

The linear clause for a scalar parameter (or variable) directs the compiler to generate
code that loads/stores its value using a scalar register instead of a vector register.
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Declare SIMD

Another implementation of the inc function is as follows

#pragma omp declare simd uniform(x) linear(k:1)

int inc(int *x, int k)

{

return x[k]+1;

}

Performance considerations:

In this example, the compiler generates linear unit-stride memory load/store instructions to
obtain performance gains
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SIMD reduction

The simd construct can also be combined with a reduction clause.

int N=1000;

double x[N], y=0;

#pragma omp simd reduction(+:y)

for (int i=0; i<N; i++)

y += x[i];

In this case, the reduction loop is vectorized using SIMD instructions.
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Exercise: Matrix-matrix multiplication

Write a parallel implementation of the matrix-matrix-multiplication

A ∈ RN×M , B ∈ RM×O : C = A · B ∈ RN×O

where each entry of matrix C is computed from

cik =
M∑
j=1

aij · bjk

You can start from the sequential implementation in task [OpenMP] Exercise 8 :
Matrix-Matrix Multiplication.
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Tasks

Fine-grained task-level parallelization is available since OpenMP 3.0.

The OpenMP tasking concept allows each thread to generate new tasks once it encounters
a task construct.

The OpenMP runtime system controls the actual creation and execution of the task.
Execution can either be immediate or delayed.

Completion of a task can be enforced through task synchronization.

Tasks are not threads! Threads are like workers in a factory and tasks are the jobs they
have to do. If you generate a new task this means that the next free worker will do the job.
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Tasks
What does the following example code print using 2 threads?

#pragma omp parallel

{ /* Begin of parallel region */

#pragma omp single

{ /* Begin of single */

printf( "A " );

#pragma omp task

{ printf( "car "); }

#pragma omp task

{ printf( "race "); }

#pragma omp taskwait

printf( "is fun to watch ");

} /* End of single - implicit barrier */

} /* End of parallel region - implicit barrier */

printf("\n");
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Taskwait

The taskwait construct forces the OpenMP runtime to wait on the completion of child
tasks of the current task .

In the example, the ’current task’ is the single thread that executes the single region. It
will wait until the two child tasks completed printing.

What happens if each of the two tasks generates descendent child tasks?
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Taskgroup
The taskgroup construct forces the OpenMP runtime to wait on the completion of child
tasks of the current task and their descendent tasks.

#pragma omp parallel

{ /* Begin of parallel region */

#pragma omp single

{ /* Begin of single */

printf( "A " );

#pragma omp taskgroup

{ /* Begin of taskgroup */

#pragma omp task

{ printf( "car "); }

#pragma omp task

{ printf( "race "); }

} /* End of taskgroup - implicit barrier */

printf( "is fun to watch ");

} /* End of single - implicit barrier */

} /* End of parallel region - implicit barrier */

printf("\n");
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Example: Conditional counting

Write a program that generates random numbers between 0 and 1 and counts how many
times the random number is smaller than 0.3. Once the program has found 10 random
numbers smaller than 0.3 it should return and print the random numbers found.

Hint: Write a function that generates a single random number and stores it into a global
array if the random number is smaller than 0.3. The function should generate a new task if
less than 10 random numbers have been found so far.

You can start from [OpenMP] Exercise 9 : Random Number Generator .
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Taskgroup

Loop over tasks in OpenMP 4.0

#pragma omp taskgroup

{

for (int tmp = 0; tmp < 32; tmp++)

#pragma omp task

for (long l = tmp * 32; l < tmp * 32 + 32; l++)

do_something (l);

} /* wait for completion of all tasks */

This creates 32 tied tasks in a new taskgroup and assigns a fixed number of 32 iterations of
do_something() to each created task.
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Taskloop

Loop over tasks in OpenMP 4.5

#pragma omp taskloop num_tasks (32)

for (long l = 0; l < 1024; l++)

do_something (l);

/* wait for completion of all tasks */

This creates 32 tied tasks in a new taskgroup and lets each task perform one or more
iterations of the entire loop.

Implicit taskgroup ensures awaiting of completion of all tasks.
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Exercise: Binary search

Implement a program that uses tasks to execute a binary search algorithm in parallel.

Use the sequential implementation of the program as the basis of your program. The
sequential program is implemented in task [OpenMP] Exercise 10 : Binary Search.

Print the number of the thread that has found the value in the tree.
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Hints

The binary tree is not sorted; a value can be located in the left or right sub-tree of a node.
You must search both sub-trees.

Do not forget to indicate which variables are private and which are shared.

Can you verify that the search operation is executed in parallel?

What happens if you vary the maximum number of threads through the environment
variable OMP NUM THREADS?
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Part IV

Threads
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Introduction

Threads enable one to implement parallel programs that are based on the shared memory
model.

Like MPI, they provide a programmer with much freedom and control when implementing a
parallel program.

On the other hand, threads require a programmer to handle data exchanges and execution
synchronisation of on a fairly low level.

With threads you can implement the same parallel algorithms that you can implement with
OpenMP (and much more), but it generally requires more effort.
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What is a thread?

A thread can be viewed as a light-weight process.

That is, a thread executes its own stream of instructions and has its own stack on which all
local function variables are allocated.

In contrast to a process, all global variables are shared between the threads.

In fact, a thread can access all memory allocated to the program, including variables on the
stack of another thread if it knows their memory addresses.
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What is a thread?

Each thread has its own variable a, but they share the global variable debug level.
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Exchanging data between threads

Threads can exchange data by writing to and reading from the same memory location(s).
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Exchanging data between threads

That looks easy! Too easy in fact ...

Unfortunately there is no such thing as a free lunch.

How do you make sure that the consumer thread reads the data after the producer thread
has made those data available?

The solution is to use a so-called mutex and condition variable to synchronise the execution
of the two threads; see the next slide.

Mutexes and condition variables are essential thread synchronisation primitives. More about
those later.
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Exchanging data between threads
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Managing threads

Threads are typically managed by the operating system kernel.

That is, the operating system provides a collection of system calls for creating and
destroying threads, and for synchronising the execution between threads.

Unfortunately, there is no standard library – at least not for C – for managing threads. This
makes it more difficult to write portable programs that use threads.

Fortunately, all operating systems provide similar concepts for managing threads. This
means that porting a program from one operating system to another is rather
straightforward.
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The POSIX threads library

On Linux and macOS you can use the POSIX threads library to manage threads. This is a
system-level library with a well-defined application programming interface.

Windows does not implement the POSIX threads API natively, but there are various
libraries that implement the POSIX threads API on top of the native Windows threads API.

Using such a compatibility library can simplify porting a program from one platform to
another.
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The POSIX threads library

This course focuses on the POSIX threads library.

Most (or all) concepts that are explained are certainly not limited to the POSIX thread
library. When using another thread library the details may be different, but the general
principles will be the same.

In fact, all concepts are applicable to other programming languages, like Java, too. This is
not surprising because each programming language must use the same system-level services
at the lowest level.

In C you can use those system-level services directly; there are no abstraction layers if you
do not want those.
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Working with threads

To use the POSIX thread library you need to include the header file <pthread.h> in your
source code.

This header file provides declarations of functions, data types, constants and macros that
can be used to start, end, and synchronise threads.

All names exported by the POSIX thread library start with the prefix pthread or, in the
case of macro names, PTHREAD .

You must link your program with the pthread library.
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Error codes

All POSIX thread functions (with a few exceptions) return an integer error code to indicate
success or failure.

By convention, a zero return value indicates success and a non-zero return value indicates
failure. The specific return value indicates what kind of error occurred.

A robust program should check the return values and take action when an error occurs.

The examples shown in these slides will ignore the return values for the sake of brevity.
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Thread IDs

Each POSIX thread has an identifier of the type pthread t which is an integral type.

In contrast to MPI and OpenMP, threads are not numbered in a linear way; the thread
identifier can be an arbitrary number.

Each thread within a process has a unique thread identifier.

A thread can obtain its own thread identifier by calling the function pthread self.

This is one of the few POSIX thread functions that does not return an error code.
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Main thread

When a process starts, it consist of one thread that is called the main thread . This is the
thread that starts the execution of the main function.

The main thread can create sub-threads or child threads. The main thread is said to be the
parent thread of its child threads.

The child threads can recursively create child threads. That is, a child thread can be the
parent of its own child threads.
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Starting and ending threads

The functions pthread create and pthread join can be used to create a thread and wait
for a thread to finish, respectively.

Here is an example:

pthread_t tid;

pthread_create ( &tid, NULL, thread_func, NULL );

pthread_join ( tid, NULL );

Note that the function thread func (not shown here) is the starting point of the thread.
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Starting threads

int pthread_create ( pthread_t* tid, const pthread_attr_t* attr,

void *(*func) (void*), void* arg );

tid OUT The identifier of the new thread.

attr IN A pointer to an attribute object indicating how the thread is to be created, or
NULL.

func IN A pointer to the thread entry point.

arg IN A pointer to data to be passed to the thread entry point.

The function pthread create creates a new thread that will start executing the function
specified in the func parameter.

The identifier of the new thread will be returned in the variable pointer to the tid

parameter. The calling thread can use the identifier to interact with the thread later.
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Starting threads

The parameter attr can be used to pass a so-called attribute specifying various details
associated with the creation of threads.

This can be useful for advanced application; it will be ignored here. We will pass a NULL

pointer to indicate that defaults settings are to be used.

Initial data for the thread can be passed by means of the arg parameter that may point to
an object of an arbitrary type. This parameter will be passed as an argument to the thread
function func. More about this later.

The next slide shows an example involving the pthread create functions.
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Starting threads example

void* thread_func ( void* arg )

{

pthread_t self = pthread_self ();

printf ( "I am thread %ld\n", (long) self );

return NULL;

}

int main ()

{

pthread_t tid;

pthread_create ( &tid, NULL, thread_func, NULL );

return 0;

}
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Ending threads

A thread ceases to exist when it returns from its thread start function (or thread entry
point).

The parent thread – the one that created the thread – normally has to wait until its child
thread has ended.

The parent thread, for instance, needs to collect a result produced by the child thread.

The parent thread can call the function pthread join to wait for the child thread to end.
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Ending threads

int pthread_join ( pthread_t tid, void** retval );

tid IN The identifier of the thread to be joined.

retval OUT A pointer to a pointer to an optional return object, or NULL.

The function pthread join waits until the thread identified by the parameter tid has
ended.

If the parameter retval is not NULL, it will be set to the value that the child thread has
returned from its thread function. More about this later.
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Ending threads example

void* thread_func ( void* arg );

int main ()

{

pthread_t tid;

pthread_create ( &tid, NULL, thread_func, NULL );

pthread_join ( tid, NULL );

return 0;

}

When the parent thread does not call pthread join, it can not know when the child
thread has ended.
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Ending threads example
void* thread_func ( void* arg )

{

/* Do important computation here ... */

return NULL;

}

int main ()

{

pthread_t tid;

pthread_create ( &tid, NULL, thread_func, NULL );

return 0;

/* Oops, child thread killed before it has completed its

computation. */

}
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Ending threads example

When the main thread exits, all its child threads will be terminated.

To be precise, when the main thread exits, the process is terminated. All threads that are
part of the process are terminated too.

You must use the function pthread join if your want to ensure that a child thread ends
before its parent thread.

Or you must roll your own synchronisation mechanism with mutexes and condition
variables. More about those later.

362 / 505



Exercise: hello world

Implement a program that spawns eight threads, each of which prints its identifier three
times.

Use the function sleep to pause one second after each printed line:

for ( i = 0; i < 3; i++ ) {

printf ( "I am thread ...\n" );

sleep ( 1 );

}

Use [Threads] Exercise 1 : Hello World as the starting point of your program.
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Passing data to threads
The thread start function must define a void pointer parameter that can be used to pass
data from a parent thread to a child thread.

Example:
void* thread_func ( void* arg )

{

printf ( "Number passed: %d.\n", *((int*) arg) );

return NULL;

}

int main ()

{

int num = 10;

pthread_t tid;

pthread_create ( &tid, NULL, thread_func, &num );

pthread_join ( tid, NULL );

return 0;

}
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Passing data to threads

The parent thread must make sure that the data exist for as long as the child thread may
use it.

The next two slides show how (not) to pass data to a child thread.

365 / 505



How not to pass data to a thread
pthread_t spawn_thread ()

{

int num = 10;

pthread_t tid;

pthread_create ( &tid, NULL, thread_func, &num );

return tid;

}

int main ()

{

pthread_t tid = spawn_thread ();

pthread_join ( tid, NULL );

return 0;

}

What is wrong here?
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How to pass data to a thread correctly
void* thread_func ( void* arg )

{

int* num = (int*) arg;

printf ( "Number passed: %d.\n", *num );

free ( num );

return NULL;

}

pthread_t spawn_thread ()

{

int* num = malloc ( sizeof(int) );

pthread_t tid;

*num = 10;

pthread_create ( &tid, NULL, thread_func, num );

return tid;

}
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Retrieving data from threads

The function pthread join can return data from a thread through its second parameter.

If this parameter is not NULL, it will be set to the pointer returned from the thread start
function.

You must make sure that the object that is pointed to exists until it has been used by the
parent thread.

The next two slides show how (not) to retrieve data from a child thread.
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How to retrieve data from a thread
void* thread_func ( void* arg )

{

int* result = malloc ( sizeof(int) );

*result = 42;

return result;

}

int main ()

{

void* result;

pthread_t tid;

pthread_create ( &tid, NULL, thread_func, NULL );

pthread_join ( tid, &result );

printf ( "Result is %d.\n", *((int*) result) );

free ( result );

return 0;

}
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How not to retrieve data from a thread
void* thread_func ( void* arg )

{

int result = 42;

return &result;

}

int main ()

{

void* result;

pthread_t tid;

pthread_create ( &tid, NULL, thread_func, NULL );

pthread_join ( tid, &result );

printf ( "Result is %d.\n", *((int*) result) );

return 0;

}

What is wrong here?
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Exercise: thread rank

Implement a program in which the main threads spawns a number of child threads.

The main thread should pass an integer rank – ranging from zero to the number of threads
minus one – to each child thread.

Each child thread should print its rank.

Use [Threads] Exercise 2 : Rank as starting point of your program.
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Exercise: parallel computation of π

Compute an approximate value of π in parallel
by means of the Monte Carlo method: pick
N points at random inside a unit square and
count the number of points M that are inside
a unit circle; π ≈ 4M/N.

Use [Threads] Exercise 3 : Compute PI as the starting point of your program.
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Hints

Use the conf t data type to obtain the number of iterations N and the number of threads
from the command-line arguments passed to the program.

Call the function parse args to parse the command line arguments.

Pass the conf object to each thread so that it knows how many iterations it should execute.

Use malloc to allocate an array of thread identifiers in the main thread.

Test your program with the command-line arguments:

--niter 40000 --nthreads 4
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Synchronisation primitives
The previous slides have shown how to pass data between threads in a vertical way. That is,
between parent and child threads.

Most non-trivial programs also need to pass data between threads in a horizontal way. That
is, between sibling threads.
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Synchronisation primitives

Horizontal data exchanges require synchronisation between threads to:

• avoid erroneous results;

• ensure the consistency of data structures;

• order events in time.

There are two kinds of synchronisation primitives with which one can handle (almost) all
situations: mutexes and condition variables.

If necessary one can build more sophisticated synchronisation objects by combining mutexes
and condition variables.
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Mutexes

A mutex is an object of type pthread mutex t that provides mutual exclusive access to
data.

A mutex can have two states: locked and unlocked. It is unlocked by default.

Only one thread can lock a mutex at any time.

If two threads try to lock a mutex at the same time, only one will succeed. The other
thread will wait until the mutex is unlocked.
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Race conditions

Mutexes are primarily used to avoid so-called race conditions in which two threads try to
make changes to the same memory location(s) at the same time.

This can lead to erroneous results and/or inconsistent data structures.

To illustrate this, consider a program in which two threads generate two sequences of
uniform random numbers. Whenever they find a number smaller than ε they increment a
shared counter.
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Race condition example
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Race condition example

When two threads try to update the global variable count at (almost) the same time, the
result will be incorrect.

This is what happens:

1 both threads fetch the value of count from memory and store it in a CPU register;

2 both threads increment the value in the CPU register;

3 both threads store the new value from the register into the memory location associated
with count.

Outcome: one increment has been missed.
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Race condition example
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Race condition example

The solution is to use a mutex:

pthread_mutex_t mutex;

int count = 0;

void* thread_func ( void* )

{

:

if ( x < EPS )

{

pthread_mutex_lock ( &mutex );

count++;

pthread_mutex_unlock ( &mutex );

}

return NULL;

}
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Using mutexes

In contrast to MPI, mutexes – and condition variables too – are not managed by the POSIX
thread library.

You must manage mutex variables yourself by defining mutex variables or by embedding
them in your structures.

When a mutex is instantiated, it has an undefined state. You must call the function
pthread mutex init to initialise the mutex; this must be done before it is used.

The functions pthread mutex lock and pthread mutex unlock can be used to lock and
unlock a mutex.

The function pthread mutex destroy must be called to destroy a mutex when it is no
longer needed.

382 / 505



Initialising a mutex

int pthread_mutex_init ( pthread_mutex_t* mutex,

const pthread_mutexattr_t* attr );

mutex OUT A pointer to the mutex to be initialised.

attr IN A pointer to mutex attributes or NULL.

The function pthread mutex init initialises a mutex. It will assign initial values to the
fields that are part of the pthread mutex t type.

It may also allocate additional data structures that are associated with the mutex.
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Initialising a mutex

The parameter attr can be used to specify various properties of the mutex. When NULL,
default values are used. The attr parameter will be ignored here.

The function pthread mutex init must be called before a mutex is used.

void bad_idea ()

{

pthread_mutex_t mutex;

pthread_mutex_lock ( &mutex ); /* Error: not yet initialised. */

}
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Destroying a mutex

int pthread_mutex_destroy ( pthread_mutex_t* mutex );

mutex INOUT A pointer to the mutex to be destroyed.

The function pthread mutex destroy destroys a mutex. It must be called when a mutex
is no longer used.

This function may deallocate any data structures that are associated with the mutex.

In well-formed program, calls to pthread mutex init are always balanced by calls to
pthread mutex destroy.
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Mutex initialisation example

pthread_mutex_t mutex;

int count = 0;

void* thread_func ( void* ); /* Not shown here */

int main ()

{

pthread_mutex_init ( &mutex, NULL );

/* Spawn threads using the mutex ... */

/* Join threads ... */

pthread_mutex_destroy ( &mutex );

return 0;

}
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Locking a mutex

int pthread_mutex_lock ( pthread_mutex_t* mutex );

mutex INOUT A pointer to the mutex to be locked.

The function pthread mutex lock locks a mutex. Only one thread can lock a given mutex
at a time.

A thread will be blocked if it calls this function while the mutex has been locked.

When this function returns, the current thread has locked the mutex.
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Unlocking a mutex

int pthread_mutex_unlock ( pthread_mutex_t* mutex );

mutex INOUT A pointer to the mutex to be unlocked.

The function pthread mutex unlock unlocks a mutex. The calling thread must have
locked the mutex with a call to pthread mutex lock.

In a well-formed program each call to pthread mutex lock is balanced by a call to
pthread mutex unlock.
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Recursive locking of a mutex

A mutex can not be locked recursively by the same thread.

That is, a thread will block forever if it calls pthread mutex lock for a second time
without calling pthread mutex unlock in between.

pthread_mutex_t mutex;

void* thread_func ( void* arg )

{

pthread_mutex_lock ( &mutex );

pthread_mutex_lock ( &mutex ); /* Oops, deadlock */

return NULL;

}
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Mutex scope

A mutex can provide mutual exclusive access to a single variable, multiple variables or even
larger data structures.

The data that are protected by a mutex are said to form the scope of the mutex.

In C there is no formal way to specify the scope of a mutex in the source code; the only way
to determine the scope of a mutex is to inspect all code that can be executed when the
mutex is locked.
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Mutex scope

To make your code more readable you should indicate as clear as possible what the scope is
of a mutex.

Ways to achieve this:

• declare the mutex right next to the variables it protects;

• link the name of mutex and the variables it protects;

• combine the mutex and the variables it protects in a single struct;

• define functions for accessing the data protected by the mutex;

• indicate the mutex scope by means of comments.
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How to indicate the scope of a mutex

Declare the mutex next to the variables it protects:

pthread_mutex_t mutex;

int error;

double result;

Link the name of the mutex to the names of the variables it protects:

pthread_mutex_t solver_mutex;

int solver_error;

double solver_result;
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How to indicate the scope of a mutex

Define functions for accessing the data protected by the mutex:

void set_error ( int err );

int get_error ();

void set_result ( double res );

double get_result ();

Indicate the mutex scope by means of comments:

pthread_mutex_t mutex; /* This mutex protects the variables */

int error; /* "error" and "result". */

double result;
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Mutex granularity and lock contention

A mutex with a large scope is said to be a coarse-grain mutex.

A mutex with a small scope, on the other hand, is said to be a fine-grain mutex.

The granularity of the mutexes in a program have a large effect on the parallel scalability of
the program.

Coarse-grain mutexes tend to result in lock contention when threads are regularly waiting
on a mutex.
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Coarse-grain mutexes

To illustrate this, consider a program in which all shared data are protected by a single
mutex.

Whenever a thread needs to access one shared variable it must lock that mutex.

This will block all other threads that need to access a shared variable, even when those
variables are not related to each other.

In other words, even when threads need to access unrelated, shared variables, they
frequently have to wait; the coarse-grain mutex becomes a contended resource.
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Coarse-grain mutex example
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Coarse-grain mutex example
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Fine-grain mutexes

Lock contention can often be reduced by breaking a single coarse-grain mutex into multiple
fine-grain mutexes that protect different (unrelated) variables.

In this way different threads can access different shared variables without blocking each
other.
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Fine-grain mutex example
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Fine-grain mutex example
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Fine-grain vs coarse-grain mutexes

There is trade off between fine-grain and coarse-grain mutexes.

Fine-grain mutexes can result in better performance, but make the code harder to
understand. They also increase the possibilities for introducing subtle bugs involving race
conditions.

Advice: use as coarse-grain mutexes as possible as long as lock-contention does not have a
significant impact on performance.
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Sharing mutexes

A mutex is useful only if it is shared between multiple threads.

One way to achieve this is to declare a mutex as a global variable, along with the other
global variables that are protected by the mutex.

This is a simple approach, but one needs to be careful to make clear which mutex protects
which variables.
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Sharing mutexes through structures

Another approach is to combine the mutex and the variables it protects in one struct.

This has several advantages:

• it is clear from the code which variables are protected by which mutex;

• the struct can be allocated dynamically or on the stack, avoiding global variables;

• multiple instances of the struct can be created.
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Sharing mutexes example (1/2)

typedef struct shared_count {

pthread_mutex_t mutex;

int count;

} shared_count_t;

void* thread_func ( void* arg )

{

shared_count_t* count = (shared_count_t*) arg;

pthread_mutex_lock ( &count->mutex );

count->count++;

pthread_mutex_unlock ( &count->mutex );

return NULL

}

/* Continued on next slide ... */
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Sharing mutexes example (2/2)
int main ()

{

shared_count_t count;

pthread_t threads[4];

int i;

count.count = 0;

pthread_mutex_init ( &count.mutex, NULL );

for ( i = 0; i < 4; i++ )

pthread_create ( &threads[i], NULL, thread_func, &count );

for ( i = 0; i < 4; i++ )

pthread_join ( threads[i], NULL );

printf ( "Final count: %d.\n", count.count );

pthread_mutex_destroy ( &count.mutex );

return 0;

}
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Exercise: parallel computation of π

Modify the program that computes π in parallel from the previous exercise so that it uses a
shared variable to keep track of the number of points within a unit circle. Use [Threads]
Exercise 4 : Compute PI .

That is, instead of defining a counter per thread, define one shared counter.

Use a mutex to avoid race conditions.

Is this new implementation more efficient than the previous one?
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Condition variables: introduction

In any non-trivial (parallel) program there are dependencies between data and/or operations.

That is, an operation requires input data that are the result of another operations.

When two dependent operations are executed by different threads, one thread will have to
signal the other thread that the required input data are available.

Let’s go back to a previous example.
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Condition variables: introduction
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Condition variables: introduction

How to make sure that the “consumer” thread only prints the message after the “producer”
thread has created that message?

One approach would be to use a mutex to avoid race conditions and continuously poll for a
new message.

This is shown on the next two slides.
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Wait by polling (1/2)

pthread_mutex_t msg_mutex;

int* msg_buffer = NULL;

void producer ()

{

int* msg = malloc ( 10 * sizeof(int) );

fill_msg ( msg );

pthread_mutex_lock ( &msg_mutex );

msg_buffer = msg;

pthread_mutex_unlock ( &msg_mutex );

}

/* Continued on next slide ... */
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Wait by polling (2/2)

void consumer ()

{

int* msg = NULL;

while ( ! msg )

{

pthread_mutex_lock ( &msg_mutex );

msg = msg_buffer;

msg_buffer = NULL;

pthread_mutex_unlock ( &msg_buffer );

}

print ( msg );

free ( msg );

}
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Condition variables: introduction

This works, but it has two drawbacks:

• it results in lock contentions because the consumer thread is likely to hold a mutex
lock when the producer thread is trying to lock the mutex;

• it keeps one processor core busy while the consumer thread is polling a message.

The POSIX thread library provides a better solution in the form of condition variables.
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Condition variables: introduction

A condition variable, which has type pthread cond t, enables a thread to “sleep” until it is
signalled by another thread that some particular condition has been fulfilled.

This is more efficient than polling because it lowers lock contention and it enables the
processor core to do something useful while a thread is waiting.

The next two slides show how to implement the producer-consumer example with a
condition variable.
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Wait by using a condition variable (1/2)
pthread_mutex_t msg_mutex;

pthread_cond_t msg_cond;

int* msg_buffer = NULL;

void producer ()

{

int* msg = malloc ( 10 * sizeof(int) );

fill_msg ( msg );

pthread_mutex_lock ( &msg_mutex );

msg_buffer = msg;

pthread_cond_signal ( &msg_cond );

pthread_mutex_unlock ( &msg_mutex );

}

/* Continued on next slide ... */
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Wait by using a condition variable (2/2)

void consumer ()

{

int* msg = NULL;

pthread_mutex_lock ( &msg_mutex );

while ( ! msg_buffer )

pthread_cond_wait ( &msg_cond, &msg_mutex );

msg = msg_buffer;

msg_buffer = NULL;

pthread_mutex_unlock ( &msg_mutex );

print ( msg );

free ( msg );

}
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Condition variables: introduction

As shown in the example, a condition variable itself has no explicit state; you can only use it
to let a thread wait until it is signalled.

You must use some other variable – or multiple variables – to keep track of the condition
that is to be monitored.

In the previous example the pointer msg buffer stores the condition that is monitored: a
non-NULL pointer signals a new message.

Typically you have one condition variable for each condition that needs to be signalled
between threads.
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Condition variables: cartoon
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Condition variables and mutexes

A condition variable must always be paired with a mutex protecting the variable that stores
the actual condition. In the previous example this is the variable msg buffer.

The mutex may also protect additional variables that are shared between threads.

A condition variable may only be signalled and waited on when its associated mutex has
been locked.

It is your responsibility to make sure that this is the case, and that the signalling and
waiting thread have locked the same mutex.

In short: whenever you define a condition variable, you must define an associated mutex.
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Using condition variables

To use a condition variable, you must define a variable of type pthread cond t. It makes
sense to define a condition variable right next to its associated mutex.

You can use similar names to indicate that they are related:

pthread_mutex_t msg_mutex;

pthread_cond_t msg_cond;

Or embed them in the same struct:

struct shared_data

{

pthread_mutex_t mutex;

pthread_cond_t cond;

};
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Using condition variables

When a condition variable is instantiated, it has an undefined state. You must call the
function pthread cond init to initialise the condition variable; this must be done before it
is used.

The functions pthread cond wait and pthread cond signal can be used to wait on a
condition variable and to wake up a waiting thread.

The function pthread cond destroy must be called to destroy a condition when it is no
longer needed.
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Initialising a condition variable

int pthread_cond_init ( pthread_cond_t* cond,

const pthread_condattr_t* attr );

cond OUT A pointer to the condition variable to be initialised.

attr IN A pointer to condition attributes or NULL.

The function pthread cond init initialises a condition variable. It will assign initial values
to the fields that are part of the pthread cond t type.

It may also allocate additional data structures that are associated with the condition
variable.
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Initialising a condition variable

The parameter attr can be used to specify various properties of the condition variable.
When NULL, default values are used. The attr parameter will be ignored here.

Your program is ill-formed if you forget to initialise a condition variable before you use it.

This is a fancy way of saying that bad things will happen if you make a mistake.
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Destroying a condition variable

int pthread_cond_destroy ( pthread_cond_t* cond );

cond INOUT A pointer to the condition variable to be destroyed.

The function pthread cond destroy destroys a condition variable. It must be called when
a condition variable is no longer used.

This function may deallocate any data structures that are associated with the condition
variable.

In well-formed program, calls to pthread cond init are always balanced by calls to
pthread cond destroy.
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Condition variable initialisation example
pthread_mutex_t msg_mutex;

pthread_cond_t msg_cond;

int* msg_buffer = NULL;

void* thread_func ( void* ); /* Not shown here */

int main ()

{

pthread_mutex_init ( &msg_mutex, NULL );

pthread_cond_init ( &msg_cond, NULL );

/* Spawn threads using the mutex and condition variable ... */

/* Join threads ... */

pthread_mutex_destroy ( &msg_mutex );

pthread_cond_destroy ( &msg_cond );

return 0;

}
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Signalling a condition variable

int pthread_cond_signal ( pthread_cond_t* cond );

cond IN A pointer to the condition variable to be signalled.

The function pthread cond signal wakes up at least one thread that is waiting on the
specified condition variable.

It does nothing if no thread is waiting on the condition variable.

Typically, the thread calling pthread cond signal will have locked the mutex associated
with the condition variable, but that is not required. Be careful not to introduce subtle race
conditions, however!

425 / 505



Signalling example

This is the typical use of pthread cond signal:

void producer ()

{

int* msg = new_message ();

pthread_mutex_lock ( &msg_mutex );

msg_buffer = msg;

pthread_cond_signal ( &msg_cond );

pthread_mutex_unlock ( &msg_mutex );

}
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Signalling example

This implementation is also valid:

void producer ()

{

int* msg = new_message ();

pthread_mutex_lock ( &msg_mutex );

msg_buffer = msg;

pthread_mutex_unlock ( &msg_mutex );

pthread_cond_signal ( &msg_cond );

}

You must make sure that a waiting thread will never miss a signal.
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Waiting on a condition variable

int pthread_cond_wait ( pthread_cond_t* cond,

pthread_mutex_t* mutex );

cond IN A pointer to the condition variable on which to wait.

mutex INOUT A pointer to the mutex associated with the condition variable.

The function pthread cond wait will block the calling thread until it is woken up by
another thread that calls pthread cond signal on the same condition variable.

When calling this function, the mutex pointer to the parameter mutex must have been
locked by the calling thread.

When this function returns the mutex it will still be locked by the calling thread; it must be
unlocked with a call to pthread mutex unlock.
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Waiting example

void consumer ()

{

int* msg = NULL;

pthread_mutex_lock ( &msg_mutex );

if ( ! msg_buffer )

pthread_cond_wait ( &msg_cond, &msg_mutex );

msg = msg_buffer;

msg_buffer = NULL;

pthread_mutex_unlock ( &msg_mutex );

}
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Atomic unlock

A call to the function pthread cond wait will atomically unlock the mutex before the
calling thread is suspended.

That is, the POSIX thread library guarantees that the calling thread will not miss a signal
while the mutex is unlocked.

The mutex must be unlocked while the thread is suspended so that another thread is able
to lock the mutex and signal the waiting thread.

When the suspended thread is woken up, it will lock the mutex before it returns from the
function pthread cond wait.
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Atomic unlock

Consider this sequence of events:

1 The consumer thread locks the mutex and notices that there is no message.

2 The producer thread tries to lock the mutex but is blocked.

3 The consumer thread waits and unlocks the mutex.

4 The producer thread locks the mutex and signals the consumer thread.
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Atomic unlock

If the wait and unlock would not be atomic, then there would be a small window in which
the producer thread would be able to signal the condition variable before the consumer
thread is suspended.

The consumer thread would miss the wakeup signal and remain suspended forever.

Note here that a signal is not persistent; it will only have effect if a thread is waiting on a
condition variable when pthread cond signal is called.

If no thread is waiting at that moment, the function call will have no effect at all; the
condition variable will not “remember” that it has been signalled.
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Spurious wakeup

A thread waiting on a condition variable might be woken up while it was not signalled by
another thread.

This is called spurious wakeup and has to do with low-level signal handling within the
operating system.

To make your code robust, you should check for a condition in a loop instead of in an
if-statement.
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Spurious wakeup

This is not safe when a spurious wakeup occurs:

if ( ! msg_buffer )

pthread_cond_wait ( &msg_cond, &msg_mutex );

This is a more robust way to wait on a condition variable:

while ( ! msg_buffer )

pthread_cond_wait ( &msg_cond, &msg_mutex );
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Exercise: FIFO between threads

Implement a program in which two threads pass data through a FIFO (First In, First Out)
buffer.

That is, one thread – the producer – reads characters from the standard input and puts
those characters in the FIFO buffer.

The other thread – the consumer – reads characters from the FIFO buffer and writes them
to the standard output.

The producer and the consumer threads should end when they encounter the end of the
input stream.
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Hints

The main thread initialises the FIFO buffer and spawns both the producer and the consumer
thread. It then waits until those threads have finished executing.

Use [Threads] Exercise 5 : FIFO as the starting point of your program.

Use the function getc to read the next character from the standard input, and use the
function putc to write a character to the standard output.
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Hints

Define a struct fifo t that represents the FIFO buffer. It must contain a mutex, a
condition variable and space for storing at least one character. It must also contain one or
two integer variables indicating whether the buffer is full or empty.

To simplify your code, you can use a buffer of one character.

If you want to make your code more elegant you can define the functions fifo init and
fifo destroy that initialise and destroy a buffer, respectively.

The main thread should create an instance of the FIFO buffer and pass its address to both
child threads.
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Producer thread
This is essentially what the producer thread should do:

void* producer ( void* arg )

{

fifo_t* fifo = (fifo_t*) arg;

int ch = getc ( stdin );

while ( 1 )

{

/* Wait until buffer is empty ... */

/* Store the character ch in the buffer ... */

if ( ch == EOF )

break;

ch = getc ( stdin );

}

return NULL;

}
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Consumer thread
This is essentially what the consumer thread should do:

void* consumer ( void* arg )

{

fifo_t* fifo = (fifo_t*) arg;

int ch;

while ( 1 )

{

/* Wait until there is data in the buffer ... */

/* Read the character ch from the buffer ... */

if ( ch == EOF )

break;

putc ( ch, stdout );

}

return NULL;

}
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Broadcasting a condition

The function pthread cond signal wakes at least one thread that is waiting on a
condition variable.

That is, the POSIX thread library only guarantees that one thread will wake up, although
more than one may be woken up.

If multiple threads are waiting on the same condition variable, then you must ensure that
the other threads are woken up. If you do not do that you will have a (possible) deadlock
situation.
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Broadcasting a condition

If you use pthread cond signal then a woken thread must call pthread cond signal

again to wake up the next thread.

The next slide shows an example in which nthreads call a function barrier wait that will
block the calling thread until it has been called by the last thread.

The last thread wakes up one waiting thread, which, in turn wakes up the next thread. This
continues until all threads have been woken up.
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Broadcasting a condition example
pthread_mutex_t mutex;

pthread_cond_t cond;

int nthreads;

void barrier_wait ()

{

pthread_mutex_lock ( &mutex );

if ( (--nthreads) > 0 )

{

/* Wait for the last thread. */

pthread_cond_wait ( &cond, &mutex );

}

/* Wake up the next thread. */

pthread_cond_signal ( &cond );

pthread_mutex_unlock ( &mutex );

}
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Broadcasting a condition

While this works, it is not the most efficient solution because all the calls to
pthread cond signal involve a non-trivial amount of overhead.

Fortunately, the POSIX library provides a better solution:

int pthread_cond_broadcast ( pthread_cond_t* cond );

cond IN A pointer to the condition variable to be signalled.

This function will wake up all threads waiting on a condition variable.

Using this function the previous example can be implemented more efficiently as shown on
the next slide.
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Broadcasting a condition example

pthread_mutex_t mutex;

pthread_cond_t cond;

int nthreads;

void barrier_wait ()

{

pthread_mutex_lock ( &mutex );

if ( (--nthreads) == 0 )

/* This is the last thread; wake up all other threads. */

pthread_cond_broadcast ( &cond );

else

/* Wait for the last thread. */

pthread_cond_wait ( &cond, &mutex );

pthread_mutex_unlock ( &mutex );

}
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Exercise: barrier object

Implement a struct barrier t that can be used to synchronise the execution of a group
of threads.

That is, this data type should enable multiple threads to wait until they all have reached a
certain point in the execution of a parallel program.

You must implement the following functions: barrier init, barrier destroy, and
barrier wait.

These are described on the next slides.
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Initialising a barrier object

void barrier_init ( barrier_t* bar, int nt );

bar INOUT A pointer to the barrier object to be initialised.

nt IN The number of threads that will participate in a barrier operation.

The function barrier init initialises the members of the struct barrier t; more about
this later.

It must be called before a barrier operation can be performed.

The parameter nt specifies the number of threads that will participate in a barrier
operation. This will be the number of threads that should call the function barrier wait.
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Destroying a barrier object

void barrier_destroy ( barrier_t* bar );

bar INOUT A pointer to the barrier object to be destroyed.

The function barrier destroy destroys a barrier object.

It must be called when a barrier object is no longer needed. Each call to barrier init

must be paired with a call to barrier destroy.
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Performing a barrier operation

void barrier_wait ( barrier_t* bar );

bar IN A pointer to a barrier object.

The function barrier wait blocks all calling threads until the last thread in the group has
entered this function.

To be precise, this function blocks until it has been called by the number of threads
indicated by the nt parameter of the barrier init function.

448 / 505



Hints

The struct barrier t must contain at least a mutex, a condition variable and a counter
that keeps track of the number of threads that have called the function barrier wait.

You need more members; that is for you to figure out.

Use [Threads] Exercise 6 : Barrier as the starting point of your program.

Test the program by spawning multiple threads and by performing at least four barrier
operations in succession.
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Exercise: reduction operation

Implement a struct reduction t that can be used to perform a global reduction
operation – like a global sum – across multiple threads.

That is, this data type should enable multiple threads to provide a local value (of type
double) and obtain the global reduction of all local values.

You must implement the following functions: reduction init, reduction destroy,
reduction sum.

These are described on the next slides.
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Initialising a reduction variable

void reduction_init ( reduction_t* red, int nt );

red INOUT A pointer to the reduction variable to be initialised.

nt IN The number of threads that will participate in a reduction operation.

The function reduction init initialises a reduction variable. That is, it initialises the
members of the struct reduction t; more about this later.

It must be called before a reduction operation can be performed.

The parameter nt specifies the number of threads that will participate in a reduction
operation. This will be the number of threads calling the function reduction sum.
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Destroying a reduction variable

void reduction_destroy ( reduction_t* red );

red INOUT A pointer to the reduction variable to be destroyed.

The function reduction destroy destroys a reduction variable.

It must be called when a reduction variable is no longer needed. Each call to
reduction init must be paired with a call to reduction destroy.
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Performing a reduction operation

double reduction_sum ( reduction_t* red, double val );

red IN A pointer to a reduction variable.

val IN The local value to be summed.

The function reduction sum performs a global sum across all threads.

The parameter val is the local value to be added to the global sum. The return value is the
global sum.

This function waits until it has been called by the number of threads indicated by the nt

parameter of the reduction init function.
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Hints

The struct reduction t must contain at least a mutex, a condition variable and a
double storing the result of the reduction operation (global sum in this case).

You need more members; that is for you to figure out.

Use [Threads] Exercise 7 : Reduction as the starting point of your program.

Test the program by spawning multiple threads and by performing at least four global
reduction operations in succession. Check whether the computed results are correct.
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Hints

There is at least a 99% chance you will not get it right at first.

That is normal; the instructors did not get it right too when they first implemented a global
reduction operation.

But you might be a genius ... :-)
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Exercise: Gram-Schmidt algorithm

Implement another parallel program that executes the Gram-Schmidt algorithm. This time
use the POSIX threads library instead of MPI.

The program should make the columns of an N × N matrix A orthonormal through a series
of dot products and vector subtractions.

Use the struct reduction t from the previous exercise to execute the dot products in
parallel with multiple concurrent threads.
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Exercise: Gram-Schmidt algorithm

The next slide shows the Gram-Schmidt algorithm again in pseudo code. Note that Aj

denotes the j-th column of the matrix A.

The two slides after that show a serial implementation of the Gram-Schmidt algorithm.
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Gram-Schmidt algorithm

do j = 1,N

do k = 1, j − 1

ck := AT
k · Aj

end do

Aj := Aj −
∑j−1

k=1 ck · Ak

Aj :=
Aj

|Aj |

end do
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Serial Gram-Schmidt implementation (1)
double a[N][N];

double c[N];

double t;

int i, j, k;

for ( j = 0; j < N; j++ )

{

for ( k = 0; k < j; k++ )

{

c[k] = 0.0;

/* Compute the dot products with the previous columns. */

for ( i = 0; i < N; i++ )

c[k] += a[i][k] * a[i][j];

}

/* Continued on the next slide ... */
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Serial Gram-Schmidt implementation (2)

/* ... continued from the previous slide. */

for ( k = 0; k < j; k++ )

for ( i = 0; i < N; i++ )

a[i][j] -= c[k] * a[i][k];

/* Normalize this column. */

for ( i = 0, t = 0.0; i < N; i++ )

t += a[i][j] * a[i][j];

t = 1.0 / sqrt ( t );

for ( i = 0; i < N; i++ )

a[i][j] *= t;

}
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Parallel Gram-Schmidt implementation

In the parallel implementation of the Gram-Schmidt algorithm, the matrix A is distributed
row-wise over the threads:

This means that each threads handles N
p rows, with p the number of threads.
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Hints

Use [Threads] Exercise 8 : Gram-Schmidt Algorithm as the starting point of your
implementation.

Use the functions matrix alloc and matrix free to create and destroy a matrix with
arbitrary dimensions.

Define a struct data t that is to be passed to each thread. It should contain at least the
matrix size, a pointer to the matrix, a pointer to a shared reduction variable, and the first
and last row indices to be processed by a thread.

You must define a data t instance for each thread!

What performance do you get? How could you improve the performance?
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Thread-local storage

Recall that variables, or data in general, can be shared between threads or private to a
thread.

Global variables are shared and local variables are private by default.

Each thread has its own copy of a local or private variable; the variable can be accessed
without race conditions.
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Shared vs local variables

Each thread has its own variable loc, but they share the variable glob.
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Shared vs local variables

This is what happens in memory:
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Global private variables

So far, so good.

But how to define a global variable that is private to each thread?

That is, how to define a global variable that has a different value for each thread?

Classical example: errno.
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The errno variable

The errno variable is a global integer that signals error conditions.

It is typically set by standard library functions that do not return an integer error code.

Many math functions use the errno variable to signal an invalid mathematical operation.
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The errno variable

#include <math.h>

#include <errno.h>

void example ()

{

double x;

errno = 0;

x = sqrt ( -1.0 );

if ( errno )

{

printf ( "Math error!\n" );

}

}
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The errno variable

This works fine in a sequential program.

However, what happens of two threads call functions that set the errno variable?

This would result in race conditions if errno would be an ordinary global integer variable.

In particular, one thread might detect an error condition caused by another thread. Or the
error condition could be missed altogether.

This is illustrated in the next slide.
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Race condition with errno
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Thread-local errno variables

Fortunately, the standard library has foreseen this problem.

The errno variable is a global variable but each thread has its own, private copy.

The copies are created and destroyed automatically when a thread starts and ends,
respectively.

This is achieved by means of thread-local storage.
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Thread-local errno variables
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Declaring thread-local variables

The POSIX thread library provides functions for defining and manipulating thread-local
variables.

These include: pthread key create, pthread key delete, pthread setspecific and
pthread getspecific.

While these functions are very flexible, they are a bit cumbersome to use for simple
thread-local variables such as errno.
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Declaring thread-local variables

Fortunately, the C11 and C++11 standards provide a much more simple way to define
thread-local variables.

Simply specify thread local before the variable declaration.

This is a macro in C (defined in <threads.h>) and a keyword in C++.

This only works for global variables!

Local variables are private by default so it makes no sense to use thread local for local
(function) variables.
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Thread-local variable example

#include <threads.h>

thread_local int ierror = 0;

void assert_even ( int n )

{

if ( n % 2 )

{

ierror = 1;

}

}
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Thread-local variable example [cont]

void* thread_func ( void* )

{

pthread_t self = pthread_self ();

assert_even ( (int) self );

if ( ierror )

{

printf ( "Thread ID not even!\n" );

}

return NULL;

}
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Thread-local example explained

The variable ierror is a global variable so that it can be accessed from different functions.
It also retains its value across function calls.

However, unlike a normal global variable, each thread has its own, private copy.

Different threads can not access each others copy, unless the address of the private copy is
passed from one thread to another.

The thread-local copy of the variable ierror is destroyed when the current threads exits.
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Exercise: thread-safe random number generator

Implement a thread-safe pseudo random number generator using thread-local storage.

Each thread should generate at least ten million random numbers. Run your program with
at least four threads.

Verify in a statistical way that all threads generate the same sequence of pseudo random
numbers.
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Random number generator example

Here is a simple pseudo random number generator:

unsigned long rand_state = 1;

int calc_random ()

{

rand_state = rand_state * 1103515245 + 12345;

return ((unsigned) (rand_state / 65536) % 32768);

}
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Hints

The variable rand state can not be a local variable; its value must be preserved between
calls to the function calc random.

Take a small number of samples (ten, say) to verity that all threads have generated the
same sequence.

Use [Threads] Exercise 9 : Thread-safe Random Number Generator as the starting point of
your program.

What happens when you do not use thread-local storage?
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Threads in C++

The C++11 standard has added classes to the standard C++ library that make it possible
to write portable C++ programs that make use of threads, mutexes and condition variables.

These classes include:

• std::thread;

• std::mutex;

• std::condition variable;

• and std::atomic.

There are more classes and functions, some of them introduced by later C++ standards.
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The std::thread class

The std::thread class represents a thread. It essentially bundles the POSIX thread
functions pthread create and pthread join.

When you instantiate a std::thread object you can pass the thread start function to the
constructor. This will create a child thread of the current thread.

Call the member function join to join the child thread.

This is illustrated in the next slide.
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Creating a std::thread instance

#include <thread>

#include <iostream>

void start_func ()

{

std::cout << "Hello! I am thread " << std::this_thread::get_id()

<< std::endl;

}

int main ()

{

std::thread thread ( start_func );

std::cout << "Created thread " << thread.get_id() << std::endl;

thread.join ();

return 0;

}
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The thread start function

The thread start function does not need to have a specific signature. You can use any
function with an arbitrary parameter list.

You can even use a member function as the thread start function.

Note that the return value from the thread start function will be ignored.

The thread start function should not throw exceptions; this will terminate the program.
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Thread start function example

struct Task

{

int data = 0;

void run () { data = 1; }

};

void example ()

{

Task task;

std::thread thread ( &Task::run, &task );

thread.join ();

std::cout << "Data = " << task.data << std::endl;

}
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Joining a thread

The join member function must be called before the destructor of a std::thread object
is invoked. Otherwise your program will be terminated.

void example ()

{

std::thread thread ( start_func );

// Oops, thread is destroyed without join().

}

486 / 505



The std::mutex class

The std::mutex class represents a mutex. It essentially bundles the POSIX thread
functions pthread mutex init, pthread mutex destroy, pthread mutex lock and
pthread mutex unlock.

A std::mutex object can not be copied. It can be embedded in other objects like other
classes.

A std::mutex may not be locked when its destructor is called.
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Example use of the std::mutex class

#include <mutex>

struct Data

{

std::mutex mutex;

int count = 0;

};

void incr_count ( Data& data )

{

data.mutex.lock ();

data.count++;

data.mutex.unlock ();

}
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Wrong use of the std::mutex class

void example ()

{

std::mutex mutex;

mutex.lock ();

throw "Oops, mutex destroyed while locked.";

mutex.unlock ();

}
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The std::unique lock class

The lock and unlock members are usually not called directly to avoid unbalanced
lock/unlock operations.

Use the std::unique lock class to lock/unlock mutexes instead. The constructor locks a
mutex and the destructor unlocks that mutex.

The std::unique lock class guarantees balanced lock/unlock calls.
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Example use of the std::unique lock class

#include <mutex>

struct Data

{

std::mutex mutex;

int count = 0;

};

void incr_count ( Data& data )

{

std::unique_lock<std::mutex> lock ( data.mutex );

if ( ++data.count > 100000 )

{

throw "Overflow" // Fine, the destructor unlocks the mutex.

}

}
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The std::condition variable class

The std::condition variable class represents a condition variable. It essentially bundles
the POSIX thread functions pthread cond init, pthread cond destroy,
pthread cond wait and pthread cond signal.

A std::condition variable must be used together with a mutex or a
std::unique lock to be precise.

Use the member function wait to wait for a condition and use the notify one function to
signal a waiting thread.

This is illustrated in the next slides.
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Example use of the std::condition variable class
#include <condition_variable>

struct FIFO

{

std::mutex mutex;

std::condition_variable cond;

int* message = nullptr;

};

void producer ( FIFO& fifo )

{

int* msg = make_message ();

{

std::unique_lock<std::mutex> lock ( fifo.mutex );

fifo.message = msg;

fifo.cond.notify_one ();

}

}
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Example use of the std::condition variable class

void consumer ( FIFO& fifo )

{

int* msg = nullptr;

{

std::unique_lock<std::mutex> lock ( fifo.mutex );

while ( ! fifo.message ) // Handle spurious wakeups.

{

fifo.cond.wait ( lock );

}

std::swap ( msg, fifo.message );

}

delete [] msg;

}
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The std::atomic class

Use the std::atomic class to perform atomic operations on objects of fundamental
(integral) type. It is a class template; the template parameter specifies the underlying
object type.

Use the member functions store and load member functions to atomically write and read
values.

Overloaded operators can be used to perform the usual numerical operations.

Other member functions can be used to perform atomic swap and atomic compare-and-swap
operations. These are useful for implementing lockless parallel algorithms.
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Example use of the std::atomic class

#include <atomic>

struct Data

{

std::atomic<int> count;

};

void incr_count ( Data& data )

{

data.count++; // Atomically increment the counter.

std::cout << "Count = " << data.count.load() << std::endl;

}
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Part V

Final Exercise
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Exercise: parallel sparse matrix-vector multiplication

This self-study exercise involves writing a program that executes a series of parallel, sparse
matrix-vector products.

The program reads a sparse matrix A from a file and stores it in a Compressed Sparse Row
(CSR) format.

After that it performs the following series of matrix-vector products:

xi = Axi−1

The first vector x0 is generated randomly.
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Exercise: parallel sparse matrix-vector multiplication

Use [Project] Parallel sparse matrix-vector multiplication as the basis of your parallel
program.

This source files implements the sequential version of the program. It defines a struct

sparse matrix t that represents a sparse matrix.

The program reads a sparse matrix from a file named matrix.dat.

You should (try to) implement three parallel versions of the program: one with MPI; one
with OpenMP and one with threads.
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The CSR format

The CSR format stores the non-zero values in a sparse matrix row wise in three arrays: a
value array; an index array; and an offset array.

The value array stores all non-zero values, one row after another.

That is, the first entries store the non-zero values on the first row. The entries after that
store the non-zero values on the second row. And so forth.

The length of the value array is equal to the number of non-zero value in the matrix.
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The CSR format

The index array stores the column index of each non-zero value.

That is, the i-th entry in the index array stores the column index corresponding with the
i-th entry in the value array.

The length of the index array is equal to the length of the value array.

The offset array stores the positions in the value and index array where each row starts.

That is, the i-th entry in the offset array is the position of the first non-zero value on the
i-th row.
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The CSR format

The length of the offset array is equal to the number of rows plus one. The last entry in
the offset array equals the total number of non-zero values.

The number of non-zero values on the i-th row is equal to:

k = offset[i + 1] - offset[i];

Note that the first entry in the offset array is zero by definition.
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The CSR format

Here is an example of a sparse matrix that is stored in the CSR format:

A =


1 0 0 0 4
0 2 1 0 0
1 0 3 1 0
0 0 0 2 0
0 0 2 0 1



value =
[
1 4 2 1 1 3 1 2 2 1

]
index =

[
0 4 1 2 0 2 3 3 2 4

]
offset =

[
0 2 4 7 8 10

]
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Sparse matrix-vector product

The following code fragment computes the product of a sparse matrix with an array named
rhs. The result is stored in an array named lhs.

for ( i = 0; i < nrows; i++ )

{

t = 0.0;

for ( j = offset[i]; j < offset[i + 1]; j++ )

{

t += value[j] * rhs[index[j]];

}

lhs[i] = t;

}
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Hints

Partition the matrix row wise and assign each batch of rows to a different thread or process.

Read the matrix on the master thread/process.

Start with the parallel implementation based on OpenMP as this is the most straightforward.

Compare the parallel performance of each implementation. Is there a significant difference?
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